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ABSTRACT
In this research we study the specific task of image-to-video re-
trieval, in which static pictures are used to find a specific timestamp
or frame within a collection of videos. The inner temporal structure
of video data consists of a sequence of highly correlated images
or frames, commonly reproduced at rates of 24 to 30 frames per
second. To perform large-scale retrieval, it is necessary to reduce
the amount of data to be processed by exploiting the redundancy
between these highly correlated images. In this work, we explore
several techniques to aggregate visual temporal information from
video data based on both standard local features and deep learning
representations with the focus on the image-to-video retrieval task.
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1 INTRODUCTION
Billions of images and videos are generated online every day. With
this amount of data publicly available, systems to access and man-
age multimedia content efficiently are crucial. In this context, vi-
sual search and retrieval techniques play an important role in the
management of multimedia datasets. Visual multimedia retrieval
systems index and find visual content in a collection of images or
videos by using a query input. These systems may perform several
retrieval tasks, depending on the type of data to be processed.

There exists many different kinds of multimedia retrieval tasks.
For example, the well-known image retrieval task, in which a query
image is used to find a picture within a collection, has been an
active field of research in the computer vision community for a long
time [24] and only lately, with the introduction of deep learning
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Figure 1: Image-to-video retrieval task. Using visual encod-
ings, videos are indexed in a collection and static images are
used as queries to find a specific video clip or timestamp.

techniques [6] its performance has been boosted considerably [11].
Other methods for retrieving images from datasets include text-to-
image retrieval [23], in which a detailed text description is provided
to find the image of interest, and audio-to-image retrieval [12],
in which images are retrieved based on descriptive audio tracks.
Regarding video, video-to-video retrieval [18], in which video clips
are found by providing a relevant video, is widely used for video
copy detection, and image-to-video retrieval [4] aims to find a
specific frame within a video collection from a static image.

In this workwe study the specific task of image-to-video retrieval,
which has not been explored as much as other multimedia retrieval
tasks. Identifying a certain frame from a collection of videos (Figure
1) is a task with many applications, such as video search [2], video
content augmentation [10] or video bookmark [9], among others.
In contrast to image-to-image retrieval, image-to-video retrieval
is an asymmetric task in which dataset items and query images
require different processing algorithms. When only considering
their visual content (i.e. ignoring audio tracks and metadata), videos
are a sequence of consecutive images, which usually are presented
at rates between 24 to 30 frames per second to fake the human brain
and simulate temporal movement. This temporal structure implies
that frames that are close in time are highly correlated to each
other. As a consequence, most of the visual information in a video
turns out to be redundant or duplicated. Large-scale image-to-video
retrieval systems cannot afford to process and index all the visual
data available in videos and thus, summarization methods to reduce
the amount of data are required. Temporal aggregation of visual
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features in videos is the technique to summarize redundant visual
data in video frames into more compact representations (Figure
2). In this work, we study several temporal aggregation methods
to exploit visual redundancy in video data whereas at the same
time, meaningful representations for image-to-video retrieval are
obtained.

2 RELATEDWORK
Early work in image-to-video retrieval [16, 21] was based on apply-
ing image retreival techniques to video data. Sivic and Zisserman
presented in [21] the well-known bag-of-words (BoW) algorithm
by indexing video frames from two movies. Similarly, other work
[9, 16] proposed to use BoW with vocabulary trees to index video
frames. These methods, however, processed each video frame inde-
pendently, without considering any temporal correlation between
similar frames.

However, to perform large-scale image-to-video retrieval and
to exploit temporal redundancy within highly correlated frames,
temporal aggregation techniques are needed. Temporal aggregation
techniques for image-to-video retrieval can be classified into two
different groups: local features-based and global features-based. Lo-
cal features-based methods [1, 5], extract a set of local features from
each frame, typically a few hundred. Each visual feature is tracked
along similar frames. Features in the same track are aggregated into
a single feature, so the total number of visual features represent-
ing each video segment is reduced. For example, in [1] aggregated
vectors are obtained by averaging SIFT [15] descriptors within the
same track, whereas authors in [5] explore other methods, such as
keeping one feature or computing the minimum distance.

On the other hand, global features-based temporal aggregation
methods for image-to-video retrieval [4, 25] aim to encode the
visual information of a video segment into a single compact vector.
Zhu and Satoh [25] aggregate all the SIFT local features in a video
clip into a high-dimensional BoW vector. Similarly, Araujo et al.
[4] compute compact Fisher Vectors [19] per frame and aggregate
them into a single binarized vector per clip.

Previous work in image-to-video retrieval is mostly based on
the aggregation of hand-crafted local SIFT features. Considering
the outstanding results of deep learning in other retrieval tasks
(such as image-to-image [11] or text-to-image retrieval [23]), in
this work we explore temporal aggregation methods based on the
aggregation of other kind of features, such as local binary features
[8] and deep learning visual features [6, 22].

3 PROBLEM FORMULATION
In this section, we formalize the problem of image-to-video retrieval.
Considering the inner visual structure of videos, which consist on a
set of standard static images known as frames, a shot is defined as
a set of consecutive frames that have been captured with the same
camera without interruptions.

Let’s consider a set of videos V = {Vi }i ∈(0, ..,N ) of size N ,
where each video Vi is at the same time a set of shots Vi =

{Si, j }j ∈(0, ..,NVi ) of size NVi , and where each shot Si, j is at the
same time a set of frames Si, j = { fi, j,k }k ∈(0, ..,NSi, j ) of size NSi, j .
Note that fi, j,k corresponds to the k-th frame of the j-th shot of
the i-th video in the collection. Given a query image q, the goal is

Figure 2: Visual data in video frames is encoded into vi-
sual vectors.When frames are very similar, many visual vec-
tors are redundant. By using temporal aggregationmethods,
compact and meaningful representations are obtained.

to find the most similar frame f̂ , belonging to the shot Ŝ, according
to a specific metric distance d , such as:

f̂ = argmin
fi, j,k ∈V

d(ϕ(q),ϕ(fi, j,k )) (1)

where ϕ(q) and ϕ(fi, j,k ) are the visual representations of q and
fi, j,k , respectively.

For large-scale datasets, performing a search over all frames
within the collection V is prohibitive. To alleviate the search, two
techniques are used. Firstly, the amount of visual features ϕ(fi, j,k )
within a shot Si, j is reduced by using a temporal aggregation
method Θ(·) over each shot:

Θ(Si, j ) = Θ({ϕ(fi, j,k )}) (2)

Secondly, taking advantage of the inner visual structure of videos,
the search is performed in two stages: shot-level search and frame-
level search. In the shot-level search, the shot of interest Ŝ is found:

Ŝ = argmin
Si, j ∈V

d(ϕ(q),Θ(Si, j )) (3)

Finally, in the frame-level search, f̂ is retrieved from the frames
contained in Ŝ :

f̂ = argmin
fi, j,k ∈Ŝ

d(ϕ(q),ϕ(fi, j,k )) (4)

In the next section, we present two different aggregationmethods
Θ(·) to perform image-to-video retrieval for large-scale datasets.

4 OUR APPROACHES
We propose two different models to aggregate temporal redundant
visual information from videos:

• Local Binary Temporal Tracking (LBTT)
• Deep Features Temporal Aggregation (DFTA)

4.1 Local Binary Temporal Tracking
LBTT method, which is detailed in [10], is based on the summariza-
tion of hand-crafted local binary features.

4.1.1 Image Representation. In LBTT, images are represented
by a set of BRIEF [8] features, which encode the pixel intensity
value of small image regions into 256-dimensional binary vectors.
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4.1.2 Temporal Encoding. Binary features are tracked along
time by matching descriptors in consecutive frames. Two descrip-
tors are a match when the Hamming distance between them is
below a threshold. Matches that are not spatially close in the pixel
space are filtered. The tracking is performed in a bidirectional way
so features within a track are unique (i.e. each feature can only be
matched with up to two features: one in the previous frame and
one in the following frame). To avoid adding noisy features, only
stable tracks in time are considered.

The motivation of using binary features as the local descriptor is
two-fold. Firstly, Hamming distance for matching binary features
is faster to compute than Euclidean distance for matching SIFT
vectors. Secondly, we find that binary features are more stable over
time than SIFT (Figure 3) and hence, easier to aggregate. We define
a key feature as the aggregation of all the features in the same track
into a single vector. For each track, its key feature is computed by
using majorities.

4.1.3 Shot Boundary Detection. Consecutive frames that share
visual similarities are grouped into shots. The boundaries of dif-
ferent shots are detected when two consecutive frames have no
common tracks. Subsequently, each shot is then represented by a
set of key features, similarly to how frames are represented by a
set of features.

4.1.4 Retrieval. At query time, BRIEF features are extracted
from the query image. To find the most similar shot to the query
image, for each query feature a set of nearest neighbour (NN) key
features is obtained. Key features are indexed in a kd-tree so that
the NN search can be performed faster. Each key feature votes for
the shot it belongs to. The set of frames contained in the most
voted shot are compared against the input image by brute force, i.e.
distances between descriptors in the query image and descriptors
in the candidate frames are computed. The frame with minimum
distance is retrieved.

4.2 Deep Features Temporal Aggregation
DLTAmethod is based on the temporal aggregation of deep learning
visual features.

4.2.1 Image Representation. In DLTA, the visual content of
each frame is encoded in a RMAC [22] image vector. RMAC is
a deep global image representation obtained from the last convo-
lutional layer of a convolutional neural network (CNN). When an
image is fed into the CNN, the response of each filter of the last
convolutional layer is represented by a feature map. RMAC com-
putes local features by max-pooling the activations of different
regions in the feature map. Each of these local vectors is indepen-
dently post-processed with ℓ2-normalization, PCA-whitening and
ℓ2-normalization. Post-processed vectors are summed together and
ℓ2-normalized one last time to obtain a single vector per image.

4.2.2 Temporal Encoding. By encoding each video segment into
a single visual vector, we aim to capture as much visual informa-
tion as possible whereas at the same time we reduce the amount
of redundant data. So far, we study two different approaches to
aggregate global RMAC vectors into a video shot representation:

• DLTA-Max: for each dimension, the shot encoding is ob-
tained by computing the frame RMAC maximum value.

Θ(Si, j ) =maxpool(ϕ(fi, j,k )) (5)

Figure 3: Trajectories of sample tracks along a sequence of
frames. Left: Binary features. Right: SIFT features. Binary
features are more constant over time than SIFT features.

• DLTA-Mean: the shot encoding is computed as the average
of the RMAC features within the shot.

Θ(Si, j ) =
1

NSi, j

NSi, j∑
k=1

ϕ(fi, j,k ) (6)

Shot boundaries are detected using the same algorithm as in §4.1.3.
4.2.3 Retrieval. For each query image, its RMAC vector is ob-

tained. Query vector is matched against the aggregated shot en-
codings using cosine similarity. The shot encoding with minimum
distance to the query is retrieved. Then, frame RMACs within the re-
trieved shot are matched against the query vector. The most similar
frame according to its cosine similarity is retrieved.

5 EXPERIMENTS
5.1 Experimental Details
Dataset.We have created the MoviesDB dataset [10] to evaluate
different image-to-video methods. This dataset is a collection of 40
movies with more than 80 hours of video and up to 7 million frames.
Query images for retrieval are captured by a webcam while movies
are being played on a screen in front of it. The frame number of each
captured image is saved in a text file as a ground truth. Movies and
queries have different resolutions and aspect ratios. For evaluation,
as long as the retrieved frame shares strong similarities with the
ground truth frame by matching SURF [7] features, it is consider a
Visual Match. Performance is measured in terms of accuracy:

Acc =
No. Visual Matches
Total No. Queries

(7)

LBTT. All the frames and images are scaled down to 720 pix-
els in width. When tracking binary features, only matches with
a Hamming distance less than 20 and a spatial distance less than
100 pixels are considered. For computing key features, only stable
tracks longer than 7 frames are used.

DLTA. Frames are resized to 1024 pixels width. Query images are
resized to 960 pixels width. RMAC features are extracted using the
end-to-end architecture proposed in [11] with pretrained VGG16
weights [20]. Frames are subsampled and processed at 5 fps. PCA
whitening is computed using the movie American Beauty, which is
not in the MoviesDB dataset.
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Table 1: Results in The Devil Wears Prada from MovieDB.

Method Dim Memory N.Features Acc

Lo
ca
l IR-BRIEF 256 2.53 GB 85M 0.93

LBTT 256 61 MB 2M 0.93

G
lo
ba

l

IR-FC1 4096 614 MB 39,324 0.63
IR-FC2 4096 614 MB 39,324 0.42
IR-RMAC 512 76.8 MB 39,324 0.91
DLTA-Max 512 3.13 MB 1,602 0.22
DLTA-Mean 512 3.13 MB 1,602 0.69

5.2 Experimental Results
We evaluate our temporal aggregation methods in a small subset
of the MoviesDB dataset. Table 1 shows the results for The Devil
Wears Prada movie. Our aggregation methods LBTT and DLTA are
compared to their corresponding image retrieval versions, IR-BRIEF
and IR-RMAC, respectively (i.e. no temporal aggregation is used).
IR-FC1 and IR-FC2 are image-retrieval algorithms on top of fea-
tures from VGG16 network’s first and second fully connected layer,
respectively, which obtain significantly worst accuracy than IR-
RMAC by using 8 times more memory. This indicates that features
from fully connected layers may not be good enough for image-
to-video retrieval, as suggested by other authors [4]. With respect
to our temporal aggregation methods, LBTT achieves comparable
accuracy to both IR-BRIEF and IR-RMAC by using significantly less
memory. With only 3.13MB of memory, DLTA-Mean performance
is slightly worst then IR-RMAC. However, DLTA-Max is clearly
not capturing the visual video data according to the needs of the
image-to-video retrieval task. Our temporal aggregation methods,
are further compared in fours different movies in Table 1, where
again, DLTA methods are not able to capture the visual video data
as well as LBTT. This may suggest that either representing each
shot into a single vector is not enough for image-to-video retrieval
or that more complex DLTA methods are needed.

6 CONCLUSIONS AND FUTUREWORK
This research proposes temporal aggregation models of visual fea-
tures for image-to-video retrieval, in which static pictures are used
to find a specific frame in a video a collection. The models presented
in this work are based on the aggregation of local binary features
and deep learning features. The experiments conducted so far show
that methods based on binary features outperform deep learning
methods. As a future work, we aim to explore more complex meth-
ods to aggregate deep learning features for image-to-video retrieval
task. According to other work [4], which successfully aggregates
shots into single vectors using SIFT features, we believe that there
is still room for improvement in the aggregation of deep learn-
ing features. So far, DLTA methods are based on the aggregation
of deep features from pre-trained CNN architectures. Re-training
and fine-tunning these architectures for the specific retrieval task
should lead to better results [11]. As part of our work in progress,
we are studying DLTA based in LSTMs [13]. However, it is still an
open question whether LSTMs are able to properly encode data for
image-to-video retrieval. Other methods to be considered in the

Table 2: Accuracy in TheDevilWears Prada, GroundhogDay,
Her and Pirates of the Caribbean movies from MoviesDB.

Method Movie1 Movie2 Movie3 Movie4

LBTT 0.93 0.97 0.76 0.80
DLTA-Max 0.22 0.16 0.18 0.12
DLTA-Mean 0.69 0.56 0.53 0.47

future are 3D CNN [14] and temporal autoencoders [17]. We also
aim to conduct experiments in the full MoviesDB dataset as well as
in other image-to-video retrieval collections (SI2V [2] and VB [3]).
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