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This dissertation studies the problem of finding relevant content within a
visual collection according to a specific query by addressing three key modalities:
symmetric visual retrieval, asymmetric visual retrieval and cross-modal retrieval,
depending on the kind of data to be processed.

In symmetric visual retrieval, the query object and the elements in the collec-
tion are from the same kind of visual data, i.e. images or videos. Inspired by the
human visual perception system, we propose new techniques to estimate visual
similarity in image-to-image retrieval datasets based on non-metric functions,
improving image retrieval performance on top of state-of-the-art methods.

On the other hand, asymmetric visual retrieval is the problem in which queries
and elements in the dataset are from different types of visual data. We propose
methods to aggregate the temporal information of video segments so that image-
video comparisons can be computed using similarity functions. When compared
in image-to-video retrieval datasets, our algorithms drastically reduce memory
storage while maintaining high accuracy rates.

Finally, we introduce new solutions for cross-modal retrieval, which is the task
in which either the queries or the elements in the collection are non-visual objects.
In particular, we study text-image retrieval in the domain of art by introducing
new models for semantic art understanding, obtaining results close to human
performance.

Overall, this thesis advances the state-of-the-art in visual retrieval by pre-
senting novel solutions for some of the key tasks in the field. The contributions
derived from this work have potential direct applications in the era of big data,
as visual datasets are growing exponentially every day and new techniques for
storing, accessing and managing large-scale visual collections are required.
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Part I

Introduction and Background



1
Introduction

This thesis explores multiple modalities of visual retrieval, i.e. finding relevant

samples in large collections of visual content by using different types of data

queries, and presents a number of techniques for multi-modal visual search.

Multi-modal visual search is classified into different modalities according to the

type of data involved in the task. Specifically, we study three main multi-modal

visual retrieval problems:

1. symmetric visual retrieval, in which dataset content and queries are from

the same type of visual data (e.g. searching images with images);

2. asymmetric visual retrieval, in which dataset content and queries are from

different types of visual data (e.g. searching videos with images);

3. cross-modal retrieval, in which dataset content and queries are from different

type of data (e.g. searching images with text).

Throughout this thesis„ we introduce new methods and datasets for each of

these modalities, contributing to advance the state-of-the-art in multi-modal

retrieval tasks. The experiments conducted here show that our proposed methods

outperform previous work in terms of both accuracy and efficiency, obtaining

results close to human performance in high-level recognition tasks.
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1.1 Motivation

In the era of information explosion, the amount of visual content stored in online

platforms is growing exponentially every day. The incorporation of high-quality

digital cameras to smartphones and the popularity of social media platforms,

boosts the use of visual data in people’s day-to-day communications. Nowadays,

it is faster to share a picture of a meal than to describe it to a friend and it is

easier to learn the latest make-up techniques by watching videos in Youtube than

by reading beauty tips in magazines.

The explosion of visual data leads to the accumulation of images and videos

in very large collections. As an illustration, according to the latest statistics1, a

million photos and videos are being created every day in Snapchat, 95 million

photos are being uploaded daily to Instagram and 300 hours of video are being

shared on Youtube every minute. In Facebook along, around 136,000 photos are

being uploaded every 60 seconds.

Considering that these examples are just from some of the most popular social me-

dia platforms, with personal photo collections (i.e. photos that are not posted on

social media) and private databases (e.g. medical records, surveillance cameras,

etc.) excluded, the actual volume of images and videos that has been created in

the digital era is beyond count. In this context, a specific image or video amongst

a large collection of visual data is the proverbial needle in a haystack.

Computer vision (CV) techniques can assist in accessing and managing large-scale

datasets of images and videos efficiently. Specifically, visual retrieval is the field

in CV that finds relevant data within a visual collection according to a specific

input. In visual retrieval, the visual content of images and videos is used to

automatically decide whether an image or a video is relevant to the query input

1Statistics from: https://www.omnicoreagency.com/ [Accessed: 08 Jul. 2018]

Chapter 1 Introduction 14
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Image-to-Image

Video-to-Video
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Image-to-Video

Video-to-Image

Cross-Modal

Image-Text

Audio-Video

Video-Text

Audio-Image

Fig. 1.1: Different types of multi-modal visual retrieval problems, categorized
in three modalities: symmetric visual retrieval, asymmetric visual retrival and
cross-modal retrieval. In green, the specific tasks studied in this dissertation.

or not. Depending on the application, the input used as query can be from a large

range of data types.

Visual retrieval can be classified into three main modalities depending on the kind

of query input and the kind of data to be retrieved. These three categories are:

symmetric visual retrieval, asymmetric visual retrieval and cross-modal retrieval,

as shown in Figure 1.1. The way of approaching a specific visual retrieval problem

depends on the modality of the task.

In symmetric visual retrieval, both the query input and the dataset content belong

to the same kind of visual data. This is the case of image-to-image retrieval

(Smeulders et al., 2000; Zheng et al., 2018), in which a query image is used

to rank the pictures within a collection according to their similarities. Another

example is video-to-video retrieval (Geetha and Narayanan, 2008), which is used

in automatic copy detection, and consists on finding videos that are similar to an

original input video. In symmetric visual retrieval, the query and the dataset are

commonly processed using the same techniques.

In asymmetric visual retrieval, however, query inputs and visual collections

contain different types of visual data. For example, in image-to-video retrieval

a query image is used to find videos (Araujo and Girod, 2017). Similarly, in

video-to-image retrieval, a video is used to find pictures (Takacs et al., 2008).

Whereas images are static, videos contain richer information, such as time, optical

flow or motion. In asymmetric visual retrieval, the peculiarities of each data

Chapter 1 Introduction 15



type are considered independently, and thus, queries and dataset content are

processed using asymmetric techniques.

In cross-modal retrieval, the data used for querying and the data in the visual

collection are of completely different nature. This is the case of image-text

retrieval (Karpathy et al., 2014), in which textual descriptions are used to find

images, or audio-video retrieval (Ngiam et al., 2011), in which audio content is

used to retrieve videos. Although there are many types of cross-modal retrieval

tasks, such as video-text retrieval (Pan et al., 2016), audio-image retrieval (Aytar

et al., 2017), etc., they all have in common that query data and collections are

processed with independent approaches.

In summary, visual retrieval is an essential field within computer vision, both

because its utility to manage visual collections in the era of the information

explosion and because its multiple modalities and applications. Considering the

three main modalities within visual retrieval detailed above, this dissertation

focuses on how to find visual content from collections by using different kinds

of data queries. First, in symmetric visual retrieval, we study the specific case of

image-to-image retrieval, which is also known as content-based image retrieval

(CBIR). Second, in asymmetric visual retrieval, we consider applications in image-

to-video retrieval. Finally, in cross-modal retrieval, we focus on text-image

retrieval.

1.2 Context

Visual retrieval has been a field in expansion since the early 1990s. At first, visual

retrieval systems were based on textual tags (Tamura and Yokoya, 1984; Chang

and Hsu, 1992), where images were manually annotated with semantic concepts.

At search time, a textual query was used to find all the images associated with

the tag, without considering the actual visual content of the pictures. In these

Chapter 1 Introduction 16



kinds of systems, images were considered simply as entities stored in a database

and they were not involved in the retrieval process.

With the explosion of visual information, visual retrieval based on manual labels

became impractical. The manual annotation of images with textual tags was

expensive and imprecise, as different annotators could use different tags for the

same image. Therefore, a more scalable and robust alternative was necessary

and content-based image retrieval (CBIR) appeared as a field within computer

vision.

The term CBIR was firstly introduced in Kato, 1992. Its aim is to use the visual

content of images in the retrieval process. Relevant elements in a visual collection

are retrieved according to their similarity to a query input. CBIR systems rely

on two main processes: feature extraction and similarity estimation. Whereas

feature extraction algorithms represent the visual content of images in a compact

and robust descriptor, similarity estimation functions measure the visual similarity

between a query and each element in the collection. These two processes are

common in all the visual retrieval tasks, although some variations are applied

depending on the type of visual search problem, see Figure 1.2.

There have been many attempts to produce robust feature extraction algorithms

for visual retrieval, from human-engineered local features such as SIFT (Lowe,

2004) or SURF (Bay et al., 2006) and global aggregation methods (Sivic and Zis-

serman, 2003; Perronnin et al., 2010), to deep feature representations (Babenko

et al., 2014; Tolias et al., 2016). As shown in Figure 1.2, symmetric visual re-

trieval techniques apply the same feature extraction algorithms to both queries

and database content. On the other hand, asymmetric visual retrieval methods

extract different visual features from videos and images. Whereas videos are

spatio-temporal representations, images contain only spatial information. Cross-

modal retrieval approaches also use different pipelines to process visual, textual

or audio data.
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Fig. 1.2: Basic algorithmic components of visual retrieval systems.
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Similarity in visual retrieval is usually estimated with a metric distances (e.g.

Euclidean distance) between a pair of feature representations. In symmetric

and asymmetric retrieval, this distance can be applied directly to the feature

representations, as query and dataset content both belong to the same visual

space. In cross-modal retrieval, however, features from queries and collections

are described in two different spaces (e.g. visual and textual). A prior feature

mapping process to transform features from their original spaces to a common

latent space is needed. Once features are in a common space, query elements and

collection are compared using standard similarity functions.

1.3 Contributions

The aim of this dissertation is to explore visual retrieval in all of its three modal-

ities by considering the specific challenges of each modality and proposing so-

lutions accordingly. In particular, this thesis addresses the following research

questions:

Q1. In symmetric visual retrieval, is it possible to learn a non-metric function to

estimate visual similarity between two or more visual samples that does not

suffer from the rigid restrictions and limitations of metrics distances?

Q2. In asymmetric visual retrieval, how can we aggregate temporal information

to compare spatio-temporal against spatial content? Is it possible to project

images and videos in a common visual space and compare them in terms of

visual similarity?

Q3. In cross-modal retrieval, is it possible to estimate the semantic similarity

between texts and images in very specific context-heavy domains such as

art? Is it possible to learn semantic art understanding through text-image

retrieval?
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The work reported in this dissertation investigates each of these research questions

and contributes to the advancement of the state of the art in multi-modal visual

retrieval as follows:

C1. To address Q1, we introduce the use of convolutional neural networks

to estimate a non-metric visual similarity between a pair of images in

symmetric visual retrieval. We show that by using similarity networks,

image retrieval performance is improved considerably on top of high quality

image representations;

C2. In order to study Q2, we create an asymmetric visual retrieval dataset with

up to 80 hours of video and more than 25,000 query images to provide

a common and public benchmark for large-scale image-to-video retrieval

algorithms, being the image-to-video retrieval dataset with the largest

number of query images introduced so far;

C3. To address Q2, we first propose a method to aggregate local binary features

over time for efficient asymmetric image-to-video retrieval. This method

compresses temporal information in videos by a factor of 42.5 while main-

taining accuracy at similar levels as linear search;

C4. Alternatively, we propose the use of deep learning spatio-temporal features

for asymmetric visual retrieval to compress video segments into compact

512-dimensional vectors. Our compact spatio-temporal features outperform

previous methods in standard image-to-video retrieval datasets;

C5. As a direct application of Q2, we introduce a video item retrieval framework

for finding clothes in videos based on asymmetric image-to-video retrieval;

C6. To address Q3, we create SemArt, a cross-modal retrieval dataset for the

specific domain of semantic art understanding. SemArt is the first dataset

of fine-art painting images associated with attributes and text descriptions;
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C7. Additionally, we propose an evaluation protocol for cross-modal retrieval in

semantic art understanding with which future research can be benchmarked

under a common and public framework;

C8. We address Q3 by implementing a number of cross-modal retrieval models

to estimate the semantic similarity between images and texts in a joint

semantic space in the specific domain of art. Our best model obtains results

close to human performance in this high-level recognition task.

1.4 Thesis Outline

This thesis is structured into five parts. The first part is the introduction, in

which the motivation, contributions and background techniques are detailed. The

second part describes the proposed techniques for symmetric visual retrieval.

The third part contains our contribution in asymmetric visual retrieval. The

fourth part addresses the cross-modal retrieval problem. Finally, in the last part,

conclusions and final remarks are presented.

Part I: Introduction and Background

CHAPTER 2 introduces the technical background and the fundamental visual

retrieval techniques that are applied in the following parts of the thesis, such as

feature extraction, similarity estimation and evaluation methods.

Part II: Symmetric Visual Retrieval

CHAPTER 3 addresses symmetric visual retrieval and CBIR by exploring deep

learning techniques for similarity estimation. It first presents the related work in

the field and then proposes a model to push image retrieval performance by using

convolutional neural networks to estimate visual similarity and replace standard

metric functions (Garcia and Vogiatzis, 2019).
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Part III: Asymmetric Visual Retrieval

CHAPTER 4 introduces asymmetric visual retrieval in general, and image-to-video

retrieval in particular. It reviews current literature and datasets, presents a

collection of videos and query images for public and common benchmark of

image-to-video retrieval systems and introduces a framework for applying image-

to-video techniques to recognise and retrieve clothes shown in videos (Garcia and

Vogiatzis, 2017; Garcia, 2018).

CHAPTER 5 presents an approach for asymmetric image-to-video retrieval based

on the temporal local aggregation of binary features. In this chapter, the temporal

redundancy in videos is exploited to reduce the amount of data to be processed

(Garcia and Vogiatzis, 2016; Garcia and Vogiatzis, 2017).

CHAPTER 6 explores asymmetric temporal global aggregation by using deep

learning techniques. In this chapter, global video representations are obtained

via a spatio-temporal encoder based on a combination of convolutional neural

networks and recurrent neural networks (Garcia and Vogiatzis, 2018a).

Part IV: Cross-Modal Retrieval

CHAPTER 7 studies cross-modal retrieval by applying text-image retrieval tech-

niques for semantic art understanding. It introduces the current literature,

presents a dataset for semantic art understanding as well as an evaluation proto-

col based on text-image retrieval, and proposes a number of models for semantic

art understanding (Garcia and Vogiatzis, 2018b).
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Part V: Conclusions and Final Remarks

CHAPTER 8 summarizes the work presented in this dissertation, introduces the

conclusions and highlights the future lines of research within multi-modal visual

retrieval.
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2
Background

In multi-modal visual retrieval, an input query is used to find relevant elements

within a visual collection. Elements in the dataset and query inputs are rep-

resented by feature vectors, which describe the content of each element in a

compact way. Feature vectors are then compared using similarity functions, so

that elements within the collection can be ranked and retrieved according to a

similarity score (see Figure 1.2).

In this chapter, we introduce the fundamental techniques involved in visual re-

trieval systems. First, we describe some of the most common feature extraction

approaches to map the visual information from image pixels to vector representa-

tions (Section 2.1). Then, we present visual similarity techniques to estimate the

similarity between a pair of samples (Section 2.2). Finally, we detail evaluation

metrics for visual retrieval (Section 2.3). Additionally, specific methods to address

the requirements of each visual retrieval modality addressed in this dissertation

(i.e. symmetric visual retrieval, asymmetric visual retrieval and cross-modal

retrieval) are reviewed at the beginning of each relevant part.

2.1 Feature Extraction

This section is an introduction to general feature extraction techniques for vi-

sual retrieval. Feature extraction methods for specific visual retrieval tasks are

reviewed in each relevant part of this dissertation. For example, CBIR techniques

are reviewed in Chapter 3, spatio-temporal features for asymmetric retrieval

are summarized in Chapter 4 and visual and textual features for text-image

cross-modal retrieval are described in Chapter 7.
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Feature extraction is the process during which the salient visual information in

images is represented into compact and stable vectors, known as features, de-

scriptors or image representations. A desirable feature extraction method should

describe salient visual information in a unique and invariant representation, so

that visual patterns can be easily identified under different conditions, i.e. visual

features should be reasonably invariant to scaling, rotation and illumination

changes.

Feature extraction methods can be separated into three different types. Methods

based on local features (Section 2.1.1) detect the interesting regions of the image

and describe the local information of each of these regions into visual vectors

using human-engineered techniques. For a more compact representation, global

features (Section 2.1.2) aggregate local visual information into a single image

representation. Recently, deep features (Section 2.1.3) based on convolutional

neural networks were introduced as robust feature extraction methods for visual

retrieval.

2.1.1 Local Features

Methods based on local features identify relevant patches of the image and

represent the local visual content of these patches into descriptor vectors. The

relevance of each region depends on its visual content. For example, let us

consider the image from Figure 2.1 and its three extracted patches. The patches

with strong edges, as the ones located in the mountain, contain distinctive

information, whereas the textureless patch from the sky is the least representative

region.

In visual retrieval, local features are used to identify similarities between images.

Relevant patches are compared against other relevant patches to find common

patterns within different images. A simple approach to compare patches’ content

is to measure the average Euclidean distance between their pixels. However,
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Fig. 2.1: Image with extracted feature patches, some of them more distinctive
than others (image from Szeliski, 2010).

pixel intensity is very sensitive to noise and illumination changes. For a more

robust comparison, local features methods rely on human-engineered algorithms

to describe the visual content of relevant patches in stable and invariant vector

descriptors.

There are many different local features extraction methods, some of the most

well-known being SIFT (Lowe, 2004) and SURF (Bay et al., 2006). SIFT features

are obtained using histograms of oriented gradients, which makes them robust

to illumination and scaling variations. Despite of being widely used during

many years in many computer vision applications, they are considerably slow to

compute (Wu et al., 2013a). SURF features, which are also based on gradient

orientations, speed up the computation time by using integral images (Crow,

1984). A different approach to obtain local features is the ones based on binary

strings. BRIEF (Calonder et al., 2010) describes the visual content of each region

by using a binary vector that encodes intensity comparisons between pairs of

pixels. Binary features are faster to compute and compare than SIFT and SURF

features, and as shown in Chapter 5, more stable over time. A complete review
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on local features can be found in Mikolajczyk and Schmid, 2005 and (Miksik and

Mikolajczyk, 2012).

2.1.2 Image Global Features

As a single image may contain hundreds of interesting regions, local features

extraction methods do not scale well with large datasets of images. To re-

duce memory requirements and simplify the search process, global features that

aggregate multiple local features into a single image representation, such as

bag-of-words (BOW) or Fisher Vectors (FV), were introduced.

Inspired by text retrieval techniques, BOW (Sivic and Zisserman, 2003) learns a

visual vocabulary by quantizing local features into a set of visual words using k-

means (MacQueen, 1967). Images are described by the frequencies of appearance

of each visual word, i.e. for each image, local features are extracted, assigned

to their closest visual word and used to build a histogram of word frequencies.

The dimensionality of the BOW descriptor is the number of visual words, which

is usually relatively large.

To reduce vector dimensionality, FV (Perronnin et al., 2010) characterizes local

features by their deviation from a Gaussian Mixture Model (GMM) distribution.

In FV, a smaller visual vocabulary is built using a GMM. Then, the partial deriva-

tives of the quantized features with respect to the parameters of the model are

computed and concatenated into the visual descriptor. Alternatively, the Vector

of Locally Aggregated Descriptors (VLAD, Jégou et al., 2010) accumulates the

differences between the local features associated to a visual word and its centroid

to build the visual descriptor.

In general, global aggregation methods simplify the search process in visual

retrieval tasks by aggregating a set of human-engineered local features into

a single global vector. However, the most advanced techniques rely on deep
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learning methods to automatically find the important regions of an image and

aggregate their visual information into an image representation.

2.1.3 Image Deep Features

Deep features are image representations obtained from Convolutional Neural

Networks (CNNs, Fukushima and Miyake, 1982). Although CNNs were presented

by the first time in the early 1980s, it was not until 2012, with the introduction of

the AlexNet network (Krizhevsky et al., 2012) in the ImageNet challenge (ILSVRC,

Deng et al., 2009), when their popularity expanded within the CV community.

CNNs consist on a set of layers stacked on top of each other that learn non-linear

functions by using relevant training data. The learning is performed by computing

the error between the output of the CNN and the expected value, and backpropa-

gating it through the parameters of the architecture. The representations obtained

from these methods are very powerful, as they are trained to solve a specific task

by providing thousands of examples.

In CNN architectures there are usually an input layer, which processes the input

image, an output layer, which returns the final results, and several hidden lay-

ers. Each hidden layer takes the output from the previous layer, applies some

transformation and forwards the new data to the following layer.

The basic computation unit in a CNN is the neuron, which takes a d-dimensional

input vector x ∈ Rd, applies a linear transformation with weights w ∈ Rd and

bias b ∈ R, and returns the output s ∈ R as:

s =
∑

1≤k≤d
wkxk + b (2.1)

where wk and xk are the k-th element in w and x, respectively.
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Fig. 2.2: Difference between fully connected (a) and convolutional (b) layers.

Neurons are commonly arranged in layers, so that a layer with multiple neurons

returns a multi-dimensional output. Let us consider xi and si as the input and

output of the i-th layer, respectively. Typical layers that are found in modern

CNNs architectures are:

• Fully Connected layers. A fully connected layer is a group of neurons

grouped together in which each neuron is connected to all the dimensions

of the input vector (Figure 2.2a). The output of a fully connected layer is

computed as a matrix multiplication between the input and the trainable

weights of the neurons, Wi, with a trainable bias offset, bi:

si = Wixi + bi (2.2)

The dimensionality of the output is equal to the number of neurons in ech

layer.

• Convolutional layers. In convolutional layers, neurons are arranged in

a three dimensional volume (Figure 2.2b). The depth of the volume is

associated with the number of filters in the layer. Each 2-dimensional filter

is slid across the width and height of the layer input with a pre-defined

stride, to compute a local response at each location. By gathering all the

local responses of all the filers, a three dimensional volume is obtained as
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output. The width and height of the output depend on the input and the

filer size, whereas the depth is equal to the number of filters.

• Activation layers. Activation layers are non-linear functions that are usu-

ally stacked after each fully connected or convolutional layer. Activation

layers provide the network the ability to learn non-linear functions. Any

non-linear function can be used as activation layer, for example:

ReLU : sik = max(0, xik) (2.3)

tanh : sik = ex
i
k − e−xi

k

ex
i
k + e−x

i
k

(2.4)

• Pooling layers. Pooling layers reduce the dimensionality of the input by

pooling the values of a local region into a single number. The most common

pooling layers are max-pooling, which takes the maximum value within

each region, sum-pooling, which computes the sum, and mean-pooling

which uses the average. An example of the different pooling strategies is

shown in 2.3. The dimensionality of the region to be pooled and the stride

are hyperparameters of the network.

• Recurrent layers. Recurrent layers are used with temporal sequences (e.g.

word sentences or video frames) to create Recurrent Neural Networks.

Recurrent layers consist on several states in which each state receives as

input an element from the temporal input sequence (e.g. a word from a

text sentence or a frame from a video sequence). The output at each state

is computed by considering the input’s state as well as the output from the

previous state of the sequence.

These basic layer, along with regularization layers such as Dropout (Srivastava

et al., 2014) or Batch Normalization (Ioffe and Szegedy, 2015), in a specific

layout form the CNN model.
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Fig. 2.3: Different pooling strategies on a 2D input map. In this case, the pooling
region size is 2× 2 and the stride is 2.

With respect to visual retrieval, deep features are commonly extracted from an

intermediate layer of a CNN architecture pretrained for image classification. Here,

we introduce some of the most popular approaches. A more specific review about

deep features in CBIR problems is presented in Chapter 3.

Neural Codes

The extraction of deep features from pre-trained CNNs for visual retrieval was

firstly introduced in Babenko et al., 2014 and Razavian et al., 2014. In par-

ticular, neural codes (Babenko et al., 2014) are deep image representations

extracted from a pre-trained AlexNet network (Krizhevsky et al., 2012) for image

classification.

The AlexNet architecture consists on five convolutional layers, with ReLU activa-

tions and max-pooling layers, and three fully connected layers, as shown in Figure

2.4. Input images are resized to 224× 224 pixels and neural codes are extracted

from layers 5, 6 or 7. Resizing the input image to such a low resolution may be

perjudical for visual retrieval, as it is more probable than important information

such as texture may get lost.

Although the success of using networks trained for image classification in a re-

trieval task, neural codes were not able to outperform classic image retrieval

techniques based on SIFT features. However, neural codes can be further im-

proved by fine-tunning the network architecture on images that are related to the

retrieval task of interest.
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Fig. 2.4: Neural codes are extracted from layers 5, 6 or 7 of a pre-trained AlexNet
network and used as image descriptors for image retrieval (image from Babenko
et al., 2014).

RMAC

Regional Maximum Activation of Convolutions (RMAC, Tolias et al., 2016) is a

deep feature extraction method obtained from the last convolutional layer of a

CNN pre-trained for image classification. Originally, RMAC was computed from

AlexNet (Krizhevsky et al., 2012) or VGG16 (Simonyan and Zisserman, 2015)

networks, although recent work (Gordo et al., 2017) uses deeper ResNet (He

et al., 2016) architectures.

When an input image is fed into the CNN model, the last convolutional layer

outputs an activation volume with dimensions w × h× d, where d is the number

of filters and w and h are the spatial width and height of the output volume,

respectively. In RMAC, the response of the k-th filter is represented by Ωk, a 2D

tensor of size w × h. If Ωk(p) is the response at a particular position p, and R is

a spatial region within the feature map, the regional feature vector fR is defined

as:

fR = [fR
1 . . . fR

k . . . fR
d ]> (2.5)

where

fR
k = max

p∈R
Ωk(p) (2.6)
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Thus, fR consists of the maximum activation of each filter (i.e. max-pooling)

inside the spatial region R.

To obtain the RMAC representation, several regional features are extracted

at different multi-scale overlapping regions. Each of these regional vectors

is independently post-processed with `2-normalization, PCA-whitening and `2-

normalization. Regional vectors are summed up and `2-normalized once again

to obtain the final compact vector, whose dimensionality is d (i.e. the number of

filters in the last convolutional layer) and it is independent of the size of the input

image, its aspect ratio or the number of regions used. Commonly images are

resized to 1024 pixels, which is a tradeoff between image resolution and memory

requirements.

In this thesis, we use RMAC features as feature extraction in symmetric visual

retrieval along with our proposed similarity computation method (Chapter 3), in

asymmetric visual retrieval with our proposed spatio-temporal encoder for image-

to-video retrieval (Chapter 6) and also in cross-modal retrieval for semantic art

understanding (Chapter 7).

2.2 Visual Similarity

Visual similarity techniques estimate how alike a pair of samples are by evalu-

ating a similarity function between their descriptors. Similarity estimation is a

problem-dependent task, i.e. the similarity between a pair of elements depends

not only on the elements but on the data within the collection, as shown in

Figure 2.5. Similarity functions commonly used for visual retrieval are either

data independent, such as standard metric distances (Section 2.2.1), or data

dependent, such as metric learning algorithms (Section 2.2.2).
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Query

Collection A Collection B

Fig. 2.5: Visual similarity is a context-dependent task: whereas the black cat may
be considered dissimilar to the query image in collection A, the same image may
be considered similar in collection B.

2.2.1 Standard Metric Distances

Consider x and y as two feature vectors, their similarity can be computed using a

standard distance. The smaller the distance is, the more similar the two vectors

are. Some of the most common distances used for visual similarity are:

• L1-distance: dL1(x,y) =
∑
i |xi − yi|

• Euclidean distance: dE(x,y) =
√∑

i(xi − yi)2

• Cosine distance: dC(x,y) = 1− cos(x,y), where cos(x,y) = xT y
‖x‖‖y‖ is the

cosine similarity between x and y.

• Hamming distance dH(x,y) =
∑
i[xi 6= yi], which counts the number of

mismatches between x and y. It is frequently used with binary vectors.

Similarity functions based on metric distances are easy and fast to implement.

However, these methods do not consider the inner data distribution within the

visual collection or the context of the task (Figure 2.5).
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2.2.2 Metric Learning

Metric learning algorithms infer the similarity function directly from data. Metric

learning uses pairs or triplets of data to learn the weights of a parametric distance,

such as the Mahalanobis or the bilinear distance. There are many metric learning

algorithms, with OASIS (Chechik et al., 2010) being one of the most popular

ones. A more complete review on metric learning approaches can be found in

Chapter 3.

OASIS learns the bilinear similarity between a pair of vectors, x and y, as:

dB(x,y) = x>My (2.7)

where M are the parameters of the similarity function, which are initialized as

M = I (I being the identity matrix) and optimized online. At each time step t,

the triplet (x,y, z), with x and y from the same class and z from a different class,

is used to solve the optimization problem:

Mt = arg min
M,ξ≥0

1
2‖M−Mt−1‖2F + Cξ

s.t. 1− dB(x,y) + dB(x, z) ≤ ξ
(2.8)

where C is a trade-off parameter and ‖ · ‖F is the Frobenius norm.

Although OASIS considers the distribution of the data within the task of interest

to compute distances and thus, may be able to fit similarities better than standard

metrics, its computation is based on linear metric learning. Linear functions are

simpler and less prone to overfitting than non-linear functions, however, better

results are expected with non-linear methods.

As an alternative to both standard metrics and linear metric learning, in Chapter

3, we propose to learn a non-metric similarity function using neural networks,
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which outperform state-of-the-art techniques when compared in standard CBIR

datasets.

2.3 Visual Retrieval Evaluation

Given an input query, i, visual retrieval systems return a list of relevant elements,

ranked by their similarity to i. The quality of a retrieval system is commonly

measured using information retrieval evaluation metrics, such as precision (pi)

and recall (ri):

pi = |{relevant elements}i ∩ {retrieved elements}i|
|{retrieved elements}i|

(2.9)

ri = |{relevant elements}i ∩ {retrieved elements}i|
|{relevant elements}i|

(2.10)

where

• {retrieved elements}i is the list of returned elements

• {relevant elements}i is the list of elements that are relevant to i

These metrics measure the quality of the system based on the whole list of

returned elements. In large-scale collections, however, users are commonly

interested only in the top ranked positions of the list. Recall at K (R@Ki) measures

the number of relevant results on these top K positions:

R@Ki = |{relevant elements in K}i|
K

(2.11)

Recall an precision do not consider the order of the list. To measure the quality

of a ranking list in terms of sorting, average precision (APi) is used:

APi =
n∑
k=1

pi(k)∆ri(k) (2.12)
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where n is the size of the list, pi(k) is the precision at position k, and ∆ri(k) is the

change in recall from elements k − 1 to k. When multiple queries are available,

results are provided as the mean R@K and AP over all the queries.

2.3.1 Summary

This chapter provided a general overview of the common techniques used in

visual retrieval problems. Visual retrieval models consist on two fundamental

parts: feature extraction and similarity estimation. We presented some of the

most popular algorithms to perform each of these parts.

On the one hand, feature extraction is the process in which image pixels are

transformed into vectors that represent the visual information of the image. We

introduced three types of visual extraction algorithms: local features, global

features and deep features. Local features detect relevant patches in the image

and describe each of the patches with a feature vector. As describing every

single relevant patch in an image is not scalable to large datasets, global features

aggregate local features into a single global representation. Both local and global

features are based on human-engineered techniques. In contrast, deep features

extraction methods use deep learning to both detect relevant regions in the

image and describe them, alleviating the need for any hand-crafted algorithm. To

compute deep features, images are input into a CNN architecture and the output

of some the mid-layer representations is used to compute the feature vector, as

in RMAC. Deep features can be obtained from pre-trained CNN, although better

results are achieved when the CNN models are fine-tunned in a relevant dataset,

as shown in Neural Codes.

On the other hand, similarity estimation measures how alike two images are by

comparing their feature vectors. Commonly, visual similarity is estimated using

standard metrics, such as Euclidean distance or cosine similarity. However, visual

similarity is a problem-dependent task, and standard metrics do not consider the
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inner data distribution of the problem. Metric learning algorithms can estimate

visual similarity functions by fitting data more accurately, although a training

process is required.

More specific reviews for each of the parts considered in this thesis can be found

in the following chapters: Chapter 3 for CBIR, Chapter 4 for image-to-video

retrieval and Chapter 7 for text-image retrieval.
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Part II

Symmetric Visual Retrieval



3
Learning Non-Metric Visual

Similarity for Image Retrieval

In this part, we study symmetric visual retrieval, the visual retrieval modality

in which both the query image and the elements in the collection are from the

same kind of visual data. As a symmetric task, queries and dataset elements are

commonly processed using the same methods and techniques. These techniques

are usually task-specific, depending on whether the visual data is based on images

(i.e. image retrieval, Smeulders et al., 2000; Zheng et al., 2018) or videos (i.e.

video retrieval, Geetha and Narayanan, 2008). In this dissertation, we address

symmetric visual retrieval by studying image similarities in content-based image

retrieval (CBIR).

Given a query image, CBIR systems rank pictures in a dataset according to how

similar they are with respect to the query input. This is commonly performed

in a two-step process, by first computing meaningful image representations

that capture the most salient visual information from pixels (as introduced in

Section 2.1), and then measuring accurate visual similarity between these image

representations to rank images according to a similarity score (as introduced in

Section 2.2).

Recently, several methods to represent visual information from raw pixels in

images have been proposed, first by designing handcrafted features (Lowe, 2004;

Bay et al., 2006), then by compacting these local features into a single global

image descriptor (Sivic and Zisserman, 2003; Perronnin et al., 2010; Jégou et al.,

2010) and more recently by extracting deep image representations from neural

networks (Babenko et al., 2014; Gordo et al., 2017).
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Once two images are described by feature vectors, visual similarity is commonly

estimated by using a standard metric between their image descriptors. Although

regular distance metrics are fast and easy to implement, non-linear functions

are supposed to fit to the data distribution more accurately (Kulis, 2013), and

thus, better results are expected. In this chapter, we hypothesize that learning

a non-metric similarity function directly from data could push image retrieval

performance on top of high quality image representations. Consequently, we

propose a model to learn a non-metric visual similarity function based on deep

learning techniques which improves image retrieval performance in up to 40%

with respect to cosine similarity in standard datasets.

The chapter is structured as follows: related work in CBIR is reviewed in Section

3.1, the proposed model is detailed in Section 3.2 and the evaluation process is

described in Section 3.3. Finally, conclusions are summarized in Section 3.4.

3.1 Related Work

In this section, we provide a deeper review in deep learning for image retrieval

and expand the background content from Chapter 2 with specific related work in

CBIR.

3.1.1 Feature Representation

In Chapter 2, we presented the three main approaches to obtain image represen-

tations for visual retrieval, i.e. local features, global features and deep features.

With the latest advancements on deep learning, we showed that deep image

retrieval, which uses activations from CNNs as image representations, rapidly

become the state-of-the-art in CBIR.

Early work in deep image retrieval, such as Neural Codes (Babenko et al., 2014)

among others (Razavian et al., 2014; Wan et al., 2014; Liu et al., 2015), proposed
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to use representations from the last fully connected layers of pre-trained networks

(AlexNet (Krizhevsky et al., 2012)) on ImageNet classification task (Deng et al.,

2009) as deep image representations. However, with the introduction of deeper

networks (e.g. GoogLeNet (Szegedy et al., 2015), VGG (Simonyan and Zisserman,

2015) or ResNets (He et al., 2016)), mid-layer representations from convolutional

layers were shown to obtain better accuracy in retrieval problems (Babenko and

Lempitsky, 2015; Yue-Hei Ng et al., 2015; Razavian et al., 2014; Xie et al.,

2015).

As the output of a convolutional layer consists on a 3-dimensional activation

volume, several methods have been proposed to aggregate the activation output

into a compact vector, with RMAC (Tolias et al., 2016) being one of the most

succesful ones. For example, Gong et al., 2014b and Yue-Hei Ng et al., 2015

proposed to aggregate activations from convolutional layers with VLAD (Jégou

et al., 2010); Mohedano et al., 2016 encoded multiple deep representations into a

BOW (Sivic and Zisserman, 2003); Babenko and Lempitsky, 2015 and Kalantidis

et al., 2016 sum-pooled the activation maps; and Razavian et al., 2016 and Tolias

et al., 2016 (i.e. RMAC) aggregated deep features by max-pooling them into a

new vector.

Although deep image representations from networks pre-trained for image classi-

fication perform well in CBIR problems, techniques to push deep image retrieval

results even further have been proposed, such as fine-tunning or visual attention.

Fine-tunning pre-trained networks with similar data to the target retrieval task

improves the performance considerably (Babenko et al., 2014; Gordo et al., 2016;

Radenović et al., 2016; Salvador et al., 2016; Gordo et al., 2017), however, the

fine-tunning process is expensive and time-consuming as it requires retraining

all the layers of the model with thousands of training examples. Similarly, using

attention models to automatically select the more meaningful features in every

image has been shown to be beneficial (Jiménez et al., 2017; Noh et al., 2017),

but it also requires a large number of training samples to learn the weights of
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the attention layers. Alternatively, we propose an approach to improve image

retrieval performance by learning the last layers of a similarity function on top

of high-quality image representations, simplifying the fine-tunning process and

improving results with respect to standard methods.

3.1.2 Visual Similarity

As shown in Chapter 2, visual similarity can be estimated using either standard

metrics or similarity learning models. Some of the most popular similarity

learning work, such as OASIS (Chechik et al., 2010) and MLR (McFee and

Lanckriet, 2010), is based on linear metric learning by optimizing the weights of

a linear transformation matrix. Although linear methods are easier to optimize

and less prone to overfitting, nonlinear algorithms are expected to achieve higher

accuracy by modeling the possible nonlinearities of data (Kulis, 2013).

Nonlinear similarity learning based on deep learning has been applied to many

different visual contexts. In low-level image matching, CNNs have been trained

to match pairs of patches for stereo matching (Zagoruyko and Komodakis, 2015;

Luo et al., 2016) and optical flow (Dosovitskiy et al., 2015; Thewlis et al., 2016).

In high-level image matching, deep learning techniques have been proposed

to learn low-dimensional embedding spaces in face verification (Chopra et al.,

2005), retrieval (Wu et al., 2013b; Wang et al., 2014), classification (Hoffer and

Ailon, 2015; Qian et al., 2015; Oh Song et al., 2016) and product search (Bell and

Bala, 2015), either by using siamese (Chopra et al., 2005) or triplet (Wang et al.,

2014) architectures. In general, these methods rely on learning a mapping from

image pixels to a low dimensional target space to compute the final similarity

decision by using a standard metric.

Instead of projecting the visual data into some linear space, that may or may

not exist, we propose to learn the non-metric visual similarity score itself. In

a similar way, Li et al., 2014 and Han et al., 2015 trained a CNN as a binary
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classification problem to decide whether or not two input images are a match

applied to pedestrian reindentification and patch matching, respectively. In CBIR,

however, a regression score is required for ranking dataset images according to

a specific similarity value. Inspired by the results of Wan et al., 2014, which

showed that combining deep features with similarity learning techniques can be

very beneficial in image retrieval systems, we propose to train a deep learning

algorithm to learn non-metric similarities for image retrieval. We show that this

provides up to a 40% improvement in performance in standard CBIR datasets

with respect to standard methods.

3.2 Methodology

We propose a method to learn a non-metric visual similarity function from the

visual data distribution. The main idea is shown in Figure 3.1. In standard CBIR,

the similarity score between a pair of images is usually computed with a metric

distance (Zheng et al., 2018). In contrast, we use a visual similarity network to

estimate this score. As in deep image retrieval systems, we extract K-dimensional

visual vectors from images by using a CNN and then, the similarity neural network

outputs the similarity score between the pair of visual vectors.

We directly apply the output of the model as a similarity estimation to rank images

accordingly. In this way, the similarity network can be seen as a replacement of

the standard metric distance computation, overcoming the limitations of the rigid

metric constrains and improving results on top of them. To precisely capture the

different similarity degrees between images, we design a supervised regression

learning framework. The proposed similarity network is end-to-end differentiable,

which allows us to build an architecture for real end-to-end training: from the

input image pixels to the final similarity score.
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Fig. 3.1: Standard deep image retrieval versus our model: (a) Standard deep
image retrieval, in which a function based on metric distances is used to estimate
the similarity score; (b) Our proposed system, in which the visual similarity
network estimates the score by using a non-metric function.

3.2.1 Problem Formulation

Visual similarity measures how alike two images are. Formally, given a pair of

images Ii and Ij in a collection of images ξ, we define si,j as their similarity

score. The higher si,j is, the more similar Ii and Ij are. To compute si,j , images

are represented by K-dimensional image representations, which are obtained by

mapping image pixels into the feature space RK , as xl = f(Il, wf ) with Il ∈ ξ,

where f(·) is a non-linear image representation function and wf its parameters.

We propose to learn a visual similarity function, g(·), that maps a pair of image

representations xi and xj into a visual score as:

si,j = g(xi,xj , wg) = g(f(Ii, wf ), f(Ij , wf ), wg)

s.t. si,j > si,k → Ii, Ij more similar than Ii, Ik (3.1)

with Ii, Ij , Ik ∈ ξ and wg being the trainable parameters of the similarity func-

tion.

Visual similarity functions are commonly based on metric distance functions

such as g(xi,xj) = xi·xj

‖xi‖‖xj‖ or g(xi,xj) = ‖xi − xj‖, i.e. cosine similarity

and Euclidean distance, respectively. Metric distance functions, d(·), perform

mathematical comparisons between pairs of objects in a collection Π, by satisfying

the following axioms:
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1. d(a,b) ≥ 0 (non-negativity)

2. d(a,b) = 0↔ a = b (identity)

3. d(a,b) = d(b,a) (symmetry)

4. d(a,b) ≤ d(a, c) + d(c,b) (triangle inequality)

with ∀a,b, c ∈ Π.

However, metric axioms are not always the best method to represent visual human

perception (Gavet et al., 2014; Tan et al., 2006; Tversky and Gati, 1982). For

example, non-negative and identity axioms are not required in visual perception

as long as relative similarity distances are maintained. Symmetry axiom is not

always true, as the human perception of similarity may be influenced by the

order of appearance of the objects being compared. Finally, triangle inequality

does not always correspond to visual human perception either. This can be easily

understood when considering the images of a person, a horse and a centaur:

although a centaur might be visually similar to both a person and a horse, the

person and the horse are not similar to each other.

3.2.2 Similarity Network

To remove some of the difficulties with metric distance functions, we propose to

learn the similarity function using neural networks. The network used to estimate

the visual similarity, which we named similarity network, is composed of a set of

fully connected layers, each one of them, except by the last one, followed by a

rectified linear unit1 (ReLU) non-linearity. The input of the network is a concate-

nated pair of image representations vectors, xi and xj , which can be obtained

using any standard technique, such as Babenko et al., 2014 or Tolias et al., 2016,

1z = max(o, x)
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Siamese Network Similarity Network

Fig. 3.2: Similarity versus siamese networks. Siamese networks learn to map
pixels into vector representations, whereas similarity networks learn a similarity
function on top of the vector representations.

and the output is the similarity score, si,j . In that way, the similarity network

learns the similarity function, g(·), from the image representation vectors.

At this point, we would like to emphasize that, as shown in Figure 3.2, the

proposed similarity network is conceptually different to the siamese architecture

in Chopra et al., 2005. Siamese networks use pairs of images to learn the

feature extraction function, f(·), which maps image pixels images into vector

representations. Then, similarity is computed with a metric distance based

function, such as cosine similarity or Euclidean distance. In contrast, our approach

learns the function g(·) on top of the image representations, replacing the standard

metric distance computation.

3.2.3 Training Framework

We design a training framework to learn the weights of the similarity network

as a supervised regression task. However, as providing similarity labels for every

possible pair of training images is infeasible, we propose a training procedure

in which the visual similarity is learned progressively using standard image

classification annotations.
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The model is trained to discriminate whether two images, Ii, Ij , are similar or

dissimilar. Then, a similarity score, si,j , is assigned accordingly by improving a

standard similarity function, sim(·). To optimize the weights, wg, of the similarity

function g(·) from Equation 3.1, the following regression loss function is computed

between each training pair of image representations, xi,xj:

Loss(Ii, Ij) = |si,j − `i,j(sim(xi,xj) + ∆)− (1− `i,j)(sim(xi,xj)−∆)| (3.2)

where ∆ is a margin parameter and `i,j is defined as:

`i,j =


1 if Ii and Ij are similar

0 otherwise
(3.3)

In other words, the similarity network learns to increase the similarity score when

two matching images are given and to decrease it when a pair of images is not

a match. Similarity between pairs might be decided using different techniques,

such as image classes, score based on local features or manual labelling, among

others. Without loss of generality, we consider two images as similar when they

belong to the same annotated class and as dissimilar when they belong to different

classes.

Choosing appropriate examples when using pairs or triplets of samples in the

training process is crucial for a successful training (Gordo et al., 2016; Radenović

et al., 2016; Movshovitz-Attias et al., 2017). This is because if the network is

only trained by using easy pairs (e.g. a car and a dog), it will not be able to

discriminate between difficult pairs (e.g. a car and a van).

We design our training framework by emphasizing the training of difficult exam-

ples. First, we randomly select an even number of similar and dissimilar pairs

of training samples and train the similarity network until convergence. We then

choose a new random set of images and compute the similarity score between
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Similar images

Dissimilar images

Fig. 3.3: Examples of difficult pairs, i.e. dissimilar images in which the network
score is lower than the metric distance (top) and similar images in which the
network score is higher than the metric distance (bottom).

all possible pairs by using the converged network. Pairs in which the network

output is worse than the metric distance function are selected as difficult pairs

for retraining, where a worse score means a score that is lower in the case of a

match and higher in the case of a non-match. Finally, the difficult pairs are added

to the training process and the network is trained until convergence one more

time. Examples of difficult image pairs are shown in Figure 3.3.

Chapter 3 Learning Non-Metric Visual Similarity for Image Retrieval 49



3.3 Evaluation

We evaluate and compare the use of similarity networks against other similarity

functions using standard CBIR datasets.

3.3.1 Datasets

Evaluation Datasets

Our approach is evaluated on three standard image retrieval datasets: OXFORD5K

(Philbin et al., 2007), PARIS6K (Philbin et al., 2008) and LAND5K, a validation

subset of LANDMARKS dataset (Babenko et al., 2014). OXFORD5K consists on

5,062 images of 11 different Oxford landmarks and 55 query images. PARIS6K

contains 6,412 images of 11 different Paris landmarks and 55 queries. LAND5K

consists of 4,915 images from 529 classes with a random selection of 45 images

to be used as queries.

For experiments on larger datasets, we also use the standard large-scale versions

OXFORD105K and PARIS106K, by including 100,000 distractor images (Philbin et

al., 2007). In both OXFORD5K and PARIS6K collections, query images are cropped

according to the region of interest. Evaluation is performed by computing the

mean Average Precision (mAP). For LAND5K results are also reported as mAP,

by considering an image to be relevant to a query when they both belong to the

same class.

Training Dataset

For training, we use the cleaned version of the LANDMARKS dataset (Babenko et al.,

2014) from (Gordo et al., 2016). Due to broken URLs, we could only download

33,119 images for training and 4,915 for validation. To ensure visual similarity is
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learnt from relevant data, we create two more training sets, named LANDMARKS-

EXTRA500 and LANDMARKS-EXTRA, by randomly adding about 500 and 2000

images from OXFORD5K and PARIS6K classes to LANDMARKS, respectively. Query

images are not added in any case and they remain unseen by the system.

3.3.2 Implementation Details

Image Representation

Unless otherwise stated, we use RMAC (Tolias et al., 2016) as image repre-

sentation method. VGG16 network (Simonyan and Zisserman, 2015) is used

off-the-shelf without any retraining or fine-tunning. Images are re-scaled up to

1024 pixels, keeping their original aspect ratio. RMAC features are sensitive to the

PCA matrices used for normalization. For consistency, we use the PCA whitening

matrices trained on PARIS6K on all the datasets, instead of using different matrices

in each evaluation collection. This leads to slightly different results than the ones

provided in the original paper.

Similarity Training

We use cosine similarity as the similarity function, sim(xi,xj) = xi·xj

‖xi‖‖xj‖ in

Equation 3.2. For a faster convergence, we warm-up the weights of the similarity

network by training it with random generated pairs of vectors and ∆ = 0. In this

way, the network first learns to imitate the cosine similarity. Visual similarity is

then trained using almost a million of image pairs. We experiment with several

values of the margin parameter ∆, ranging from 0.2 to 0.8. The network is

optimized using backpropagation and stochastic gradient descent with a learning

rate of 0.001, a batch size of 100, a weight decay of 0.0005 and a momentum of

0.9.
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Computational cost

Standard metric functions are relatively fast and computationally cheap. Our

visual similarity network involves the use of millions of parameters that inevitable

increase the computational cost. However, it is still feasible to compute the

similarity score in a reasonable amount of time. In our experiments, training time

is about 5 hours in a GeForce GTX 1080 GPU without weight warm-up and testing

time for a pair of images is 1.25 ms on average. For reference, cosine similarity

takes 0.35 ms to compute in a single CPU.

3.3.3 Results Analysis

Architecture Discussion

As shown in Table 3.1, we first experiment with four different architectures. We

compare the performance of each configuration during the network warm-up

(i.e. ∆ = 0), by using 22.5 million and 7.5 million pairs of randomly generated

vectors for training and validation, respectively.

During the training warm-up, the network is intended to imitate the cosine

similarity. We evaluate each architecture by computing the mean squared error,

MSE, and the correlation coefficient, ρ, between the network output and the

cosine similarity. Configuration C, which is the network with the largest number

of parameters, achieves the best MSE and ρ results. However, considering a trade-

off between performance and number of parameters of each architecture, we

keep configuration B as our default architecture for the rest of the experiments.
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Config Architecture Params MSE ρ

A FC-1024, FC-1024, FC-1 2.1 3.5 ·10−4 0.909

B FC-4096, FC-4096, FC-1 21 1.9 ·10−4 0.965

C FC-8192, FC-8192, FC-1 76 1.2 ·10−4 0.974

D FC-4096, FC-4096, FC-4096, FC-1 38 1.9 ·10−4 0.964

Tab. 3.1: Four similarity network architectures. Fully connected layers are
denoted as (FC-{filters}). Number of parameters (Params) is given in millions.

Similarity Evaluation

We then study the benefits of using a non-metric similarity network for image

retrieval by comparing it against several similarity methods. The similarity

functions under evaluation are:

• Cosine: the similarity between a pair of vectors is computed with the cosine

similarity: cos(xi,xj) = xi·xj

‖xi‖‖xj‖ . No training is required.

• OASIS: OASIS algorithm (Chechik et al., 2010) is used to learn a linear

function to map a pair of vectors into a similarity score. The training of the

matrix transformation is performed in a supervised way by providing the

class of each image.

• Linear: we learn an affine transformation matrix to map a pair of vectors

into a similarity score by optimizing Equation 3.2 in a supervised way.

Classes of images are provided during training. The margin ∆ is set to 0.2.

• SimNet: the similarity function is learnt with our proposed similarity net-

work by optimizing Equation 3.2 without difficult pairs refinement. Classes

of images are provided during training and different margin ∆ are tested,

ranging from 0.2 to 0.8.

• SimNet*: same as SimNet but with difficult pairs refinement.
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LANDMARKS LANDMARKS-EXTRA500 LANDMARKS-EXTRA

OX5K PA6K LA5K OX5K PA6K LA5K OX5K PA6K LA5K

Cosine 0.665 0.638 0.564 0.665 0.638 0.564 0.665 0.638 0.564

OASIS 0.514 0.385 0.578 0.570 0.651 0.589 0.619 0.853 0.579

Linear (0.2) 0.598 0.660 0.508 0.611 0.632 0.514 0.602 0.581 0.502

SimNet (0.2) 0.658 0.460 0.669 0.717 0.654 0.671 0.718 0.757 0.668

SimNet* (0.2) 0.655 0.503 0.697 0.719 0.677 0.693 0.786 0.860 0.662

SimNet* (0.4) 0.637 0.504 0.737 0.703 0.701 0.745 0.794 0.878 0.706

SimNet* (0.6) 0.613 0.514 0.776 0.703 0.716 0.776 0.789 0.885 0.735

SimNet* (0.8) 0.600 0.511 0.783 0.685 0.710 0.803 0.808 0.891 0.758

Tab. 3.2: Comparison between different similarity functions. ∆ value is set in
brackets.

Results are summarized in Table 3.2. Trained similarity networks (SimNet,

SimNet*) outperform trained linear methods (OASIS, Linear) in all but one

evaluation datasets. As all Linear, SimNet and SimNet* are trained using the same

supervised learning protocol and images, the results suggest that the improvement

obtained with our method is not because of the supervision but because of the

non-metric nature of the model.

When using LANDMARKS-EXTRA as training dataset, results are boosted with

respect to the standard metric, achieving improvements ranging from 20%

(OXFORD5K) to 40% (PAIRS6K). When using LANDMARKS-EXTRA500 dataset,

our similarity networks also improve the mAP with respect to the cosine similarity

in the three testing datasets. This indicates that visual similarity can be learnt

even when using a reduced subset of the target image domain. However, visual

similarity does not transfer well across domains when no images of the target do-

main are used during training, which is a well-known problem in metric learning

systems (Kulis, 2013). In that case, cosine similarity is the best option over all

the methods.
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3.3.4 Image Representation Discussion

Next, we study the generalisation of our similarity networks when used on top of

different feature extraction methods: the output of a VGG16 network Simonyan

and Zisserman, 2015, the output of a ResNet50 network He et al., 2016, MAC

Tolias et al., 2016, RMAC Tolias et al., 2016 and the model from Radenović

et al., 2016. We compare the results of our networks, SimNet and SimNet*,

against cosine similarity. Results are provided in Figure 3.4. Our similarity

networks outperform cosine similarity in all the experiments, improving retrieval

results when used on top of any standard feature extraction method. Moreover,

performance is boosted when SimNet* is applied, specially in features with poor

retrieval performance, such as ResNets.

VGG16 RES50 MAC RMAC [26]
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Fig. 3.4: Image Representation Discussion. mAP for different visual similarity
techniques on top of different feature extraction methods.

Domain Adaptation

We further investigate the influence of the training dataset on the similarity

score when the similarity network is transfered between different collections

of images. As already noted in Table 3.2, visual similarity does not transfer

well across domains and a subset of samples from the target dataset is required

during training to learn a meaningful similarity function. This is mainly because

similarity estimation is a problem-dependent task (Figure 2.5), as the similarity

between a pair of elements depends on the data collection.
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Fig. 3.5: Domain adaptation evaluation when using different number of target
samples in the training set: (a) OXFORD5K; (b) PARIS6K.

To explore this effect, we evaluate the results when using different subsets of

samples from the target collection in addition to the LANDMARKS dataset. Results

are shown in Figure 3.5. There is a direct correlation between accuracy and

the number of samples from the target dataset used during training. Indeed, in

agreement with previous work in metric learning (Kulis, 2013), we observe that

not considering samples from the target dataset at all might be harmful.

The similarity network, however, outperforms standard metric results even when

a small number of samples from the target collection is used during training, i.e.

only 100 images from OXFORD5K and 250 images from PARIS6K are required in

OXFORD5K and PARIS6K datasets, respectively, which shows that the similarity

network generalizes the similarity estimation from a small subset of samples.

3.3.5 End-to-End Training

So far, we have isolated the similarity computation part to verify that the improve-

ment in the evaluation datasets compared to when using other similarity methods

is, in fact, due to the similarity network. In this section, however, we explore

a real end-to-end training architecture for image retrieval, which is depicted in

Figure 3.6.
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Fig. 3.6: End-to-End image retrieval model. MAC is used as feature extraction
method and the similarity network (SimNet) as visual similarity function.

For the feature extraction part, we adopt MAC (Tolias et al., 2016) as a feature

extraction technique, although any differentiable image representation method

may be used. To obtain MAC vectors, images are fed into a VGG16 network

(Simonyan and Zisserman, 2015). The output of the last convolutional layer is

max-pooled and l2-normalized. For the visual similarity part, we use the similarity

network with ∆ = 0.2. As the whole architecture is end-to-end differentiable, the

weights are fine-tunned through backpropagation.

To train the end-to-end architecture, we first freeze the MAC computation weights

and learn the similarity network parameters. Then, we unfreeze all the layers and

fine-tune the model one last time. As all the layers have been already pre-trained,

the final end-to-end fine-tunning is performed in only about 200,000 pairs of

images from LANDARMARKS-EXTRA dataset for just 5,000 iterations.

Results are presented in Table 3.3. There is an improvement of up to 25% when

using the similarity network with respect to the cosine similarity, as already seen

in the previous section. When the architecture is trained end-to-end results are

improved up to a 40%, since fine-tuning the entire architecture allows a better fit

to the particular dataset.

Chapter 3 Learning Non-Metric Visual Similarity for Image Retrieval 57



Features Similarity OXFORD5K PARIS6K LAND5K

MAC Cosine 0.481 0.539 0.494

MAC SimNet 0.509 0.683 0.589

MAC SimNet 0.555 0.710 0.685

Tab. 3.3: End-to-end architecture results. mAP when different parts of the image
retrieval pipeline are trained. In italic, the modules that are fine-tunned.

3.3.6 Comparison with State of the Art

We compare our method against several state-of-the-art techniques. As standard

practice, works are split into two groups: off-the-shelf and fine-tunned. Off-the-

shelf are techniques that extract image representations by using pre-trained CNNs,

whereas fine-tunned methods retrain the network parameters with a relevant

dataset. For a fair comparison, we only consider methods that represent each

image with a global vector, without query expansion or image re-ranking.

Off-the-shelf results are shown in Table 3.4 and fine-tunned results are presented

in Table 3.5. When using off-the-shelf RMAC features, our SimNet* approach

outperforms previous methods in every dataset. To compare against fine-tunned

methods, we compute RMAC vectors using the fine-tunned version of VGG16

proposed in Radenović et al., 2016. Accuracy is boosted when our similarity

network is used instead of the analogous cosine similarity method (Radenović

et al., 2016). SimNet* achieves the best mAP precision in OXFORD5K dataset and

comes second in OXFORD105K and PARIS106K after Gordo et al., 2017, which

uses the more complex and higher-dimensional ResNet network (He et al., 2016)

for image representation.

Chapter 3 Learning Non-Metric Visual Similarity for Image Retrieval 58



Method Dim Similarity OX5K OX105K PA6K PA106K

Babenko et al., 2014 512 L2 0.435 0.392 - -

Razavian et al., 2014 4096 Averaged L2 0.322 - 0.495 -

Wan et al., 2014 4096 OASIS 0.466 - 0.867 -

Babenko and Lempitsky, 2015 256 Cosine 0.657 0.642 - -

Yue-Hei Ng et al., 2015 128 L2 0.593 - 0.59 -

Kalantidis et al., 2016 512 L2 0.708 0.653 0.797 0.722

Mohedano et al., 2016 25k Cosine 0.739 0.593 0.82 0.648

Salvador et al., 2016 512 Cosine 0.588 - 0.656 -

Tolias et al., 2016 512 Cosine 0.669 0.616 0.83 0.757

Jiménez et al., 2017 512 Cosine 0.712 0.672 0.805 0.733

Ours (∆ = 0.8) 512 SimNet* 0.808 0.772 0.891 0.818

Tab. 3.4: Comparison with state-of-the-art off-the-shelf methods. Dim corre-
sponds to the dimensionality of the feature representation and Similarity is the
similarity function.

3.4 Conclusions

In this chapter, we studied asymmetric visual retrieval through CBIR. In CBIR,

a query image is used to rank images in a collection according to their visual

similarity. Standard CBIR methods, extract feature representations from activa-

tions of CNN and compute image similarity between a pair of images by applying

standard metrics, such as Euclidean distance or cosine similarity.

To overcome the limitations of metric distances, we presented a method for

learning visual similarity directly from visual data. Instead of using a metric

distance function, we proposed to train a neural network model to learn a

similarity score between a pair of visual representations. Our method was able to

capture visual similarity better than other techniques, with improvements of up

to 40% in standard image retrieval datasets.

We also proposed a real end-to-end trainable architecture for image retrieval, as

all the layers in the similarity network are differentiable. We showed that results
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Method Dim Similarity Ox5k Ox105k Pa6k Pa106k

Babenko et al., 2014 512 L2 0.557 0.522 - -

Gordo et al., 2016 512 Cosine 0.831 0.786 0.871 0.797

Wan et al., 2014 4096 OASIS 0.783 - 0.947 -

Radenović et al., 2016 512 Cosine 0.77 0.692 0.838 0.764

Salvador et al., 2016 512 Cosine 0.71 - 0.798 -

Gordo et al., 2017 2048 Cosine 0.861 0.828 0.945 0.906

Ours (∆ = 0.8) 512 SimNet* 0.882 0.821 0.882 0.829

Tab. 3.5: Comparison with state-of-the-art fine-tunned methods. Dim corre-
sponds to the dimensionality of the feature representation and Similarity is the
similarity function.

are considerably improved when a similarity network is used, as this allows us to

get a better fit of the input data distribution.

In summary, the use of a similarity network can push performance in image

retrieval systems on top of high-quality image representations, even without

the need of fine-tunning the whole architecture. This, combined with other

CBIR techniques such as visual attention, query expansions or image re-ranking,

would create more accurate algorithms and improve image retrieval systems

considerably.
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Part III

Asymmetric Visual Retrieval



4
Techniques for image-to-video

retrieval

In this part, we introduce asymmetric visual retrieval by studying image-to-video

retrieval. In image-to-video retrieval, the aim is to find a specific frame or scene

in a video collection according to a given query image. Whereas videos in the

collection contain spatio-temporal information, queries are images with only

spatial visual content. Thus, asymmetric techniques for extracting visual features

are required.

This chapter reviews the current literature in image-to-video retrieval (Section

4.1), formulizes the problem (Section 4.2) and introduces a large-scale dataset

for benchmarking systems (Section 4.3). Additionally, we propose a framework

for video content augmentation based on image-to-video retrieval (Section 4.4).

Then, Chapter 5 and Chapter 6 describe our proposed models.

4.1 Related Work

Image-to-video retrieval started to attract attention since the early 2000s. With

relatively small datasets, early work in the field (Sivic and Zisserman, 2003;

Nister and Stewenius, 2006) processed frames as independent images by applying

symmetric image retrieval techniques. For example, Sivic and Zisserman, 2003

indexed frames from two different movies by using BOW and the temporal

structure in videos was used only to reject noisy keypoints. Similarly, Nister and

Stewenius, 2006 used vocabulary trees to index BOW features from each video

frame independently, without considering any temporal redundancy.
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Fig. 4.1: Types of aggregation techniques for asymmetric visual retrieval. In No
Aggregation, all the local features in all the frames are indexed. In Spatial Aggre-
gation, a global visual feature per frame is indexed. These two methods do not
take advantage of the temporal structure of videos. In Temporal Local Aggregation,
the number of local features is reduced by identifying recurrent features along
time. In Spatio-Temporal Global Aggregation, all the visual information in a video
clip is compacted into a single vector representation.

As the number of frames in a video collection scales very fast with the size of

the dataset, processing frames as independent images in large-scale datasets is

impractical. To reduce the amount of data to be processed, Chen et al., 2010

indexed SURF features (Bay et al., 2006) extracted from specific keyframes in

a vocabulary tree. Keyframes were sampled uniformly at a specific frame per

second (FPS) rate from the video collection. However, sampling frames uniformly

from videos may lead to suboptimal performance, as using a low FPS rate might

discard important visual information from the collection, whereas using a high

FPS rate may end up indexing unnecessary data.

To index frames more efficiently in large-scale image-to-video retrieval, the

temporal structure of videos needs to be exploited. As consecutive video frames

are usually highly correlated and share strong similarities, the visual information

in similar looking frames can be compressed by aggregating their visual features

into more compact representations. Methods for aggregating visual features along
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time are classified in two categories: temporal local aggregation methods, in

which temporal information is compacted by identifying recurrent local features

(Section 4.1.1), and spatio-temporal global aggregation methods, in which the

spatio-temporal information in multiple frames is aggregated into a single global

representation (Section 4.1.2). The different types of aggregation techniques are

shown in Figure 4.1.

Note that image-to-video retrieval uses a query image to find viusally similar

scenes. A related but different problem is video instance search, in which the

aim is to find all the frames where a query instance, usually an object, a person

or a location, appears under different viewpoints (Sivic et al., 2006; Over et al.,

2011; Meng et al., 2016). An example of this is the Instance Search task on the

TRECVID challenge (Over et al., 2011), which uses up to four images from the

same instance to find all the frames where the query appears. The main difference

with the problem considered here is that video instance search performs retrieval

at the object level, whereas image-to-video retrieval finds frames according to

their scene similarity.

4.1.1 Temporal Local Aggregation Methods

Temporal local aggregation methods (Anjulan and Canagarajah, 2007; Araujo

et al., 2014) identify recurrent local features (Section 2.1.1) in a video segment

and compacts them into a reduced set of features. For example, Anjulan and

Canagarajah, 2007 proposed to extract SIFT (Lowe, 2004) features from each

frame, track them along time and average visual features within the same track

to get a single vector per track. Similarly, Araujo et al., 2014 explored tracking

SIFT features along time and proposed different methods to aggregate features

within the same track, including averaging, keeping just one or computing the

minimum distance.
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At query time, temporal local aggregation methods match local features from the

query image against the aggregated features from the collection of videos. This

process involves performing as many searches as the number of features extracted

from the query image. As each image may contain a few hundreds of local

features, conducting multiple searches might be time-consuming in large-scale

datasets. To ease the search process and reduce memory requirements, in Chapter

5 we propose a temporal local aggregation method based on binary features and

fast indexing, which is able to reduce the memory storage by more than 40 times

with respect to non-aggregation methods.

4.1.2 Spatio-Temporal Global Aggregation Methods

For a more compact search, spatio-temporal global aggregation methods (Zhu

and Satoh, 2012; Araujo and Girod, 2017) compact the visual information

of video segments into a single vector representation. For example, Zhu and

Satoh, 2012 aggregated all the SIFT local features in a video clip into a single

high-dimensional BOW vector; and Araujo and Girod, 2017 computed compact

Fisher Vectors (Perronnin et al., 2010) per frame and aggregated several frames

using super high-dimensional Bloom Filters (Bloom, 1970). In these approaches,

query to video matching is performed by computing the distance between the

query global image representation (see Section 2.1.2) and the video aggregated

representation.

Although most of the image-to-video techniques proposed in the literature are

based on the aggregation of SIFT features, some authors (Araujo and Girod,

2017; Wang et al., 2017) explored the aggregation of deep learning features (see

Section 2.1.3). Araujo and Girod, 2017 compared pre-trained CNN architectures

as feature extraction models against systems based on SIFT and Fisher Vectors,

obtaining worse performance when using the deep features. Similarly, Wang

et al., 2017 averaged MAC features (Tolias et al., 2016) from pre-trained CNN for

image-to-video retrieval, obtaining poor accuracy rates in a standard dataset.
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However, considering the outstanding results of deep learning in many retrieval

tasks (Gordo et al., 2017; Wang et al., 2016), we hypothesise that the lack of

success of deep learning models in image-to-video retrieval might be due to

(1) the model architecture and, (2) the use of pre-trained features. To address

these issues, in Chapter 6 we propose a deep learning model for learning spatio-

temporal visual representations that outperforms previous global aggregation

methods in image-to-video retrieval datasets.

4.2 Problem Formulation

Videos consist on a set of consecutive images or frames, which are grouped into

a set of shots and scenes. Shots are defined as a set of consecutive frames that

have been captured with the same camera without interruptions, whereas scenes

are defined as a set of consecutive shots that share a common theme or topic,

regardless of how similar these shots are between them.

Let us consider a set of videos V = {Vi}i∈(0,..,N) of size N , where each video Vi is

at the same time a set of shots Vi = {Si,j}j∈(0,..,NVi
) of size NVi , and where each

shot Si,j is at the same time a set of frames Si,j = {fi,j,k}k∈(0,..,NSi,j
) of size NSi,j .

Note that fi,j,k corresponds to the k-th frame of the j-th shot of the i-th video in

the collection. Given a query image q, the goal is to find the most similar frame f̂ ,

belonging to the shot Ŝ, according to a specific metric distance d, such as:

f̂ = arg min
fi,j,k∈V

d(φ(q), φ(fi,j,k)) (4.1)

where φ(q) and φ(fi,j,k) are the visual representations of q and fi,j,k, respec-

tively.

For large-scale datasets, performing a search over all frames within the collection

V is prohibitive. To alleviate the search, two techniques are used. Firstly, the
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amount of visual features φ(fi,j,k) within a shot Si,j is reduced by using a temporal

aggregation method Θ(·) over each shot:

Θ(Si,j) = Θ({φ(fi,j,k)}) (4.2)

Secondly, taking advantage of the inner visual structure of videos, the search is

performed in two stages. In the first stage, a shot-level search is conducted to

find the shot of interest Ŝ:

Ŝ = arg min
Si,j∈V

d(φ(q),Θ(Si,j)) (4.3)

Finally, in the second stage, a frame-level search retrieves f̂ from the frames

contained in Ŝ:

f̂ = arg min
fi,j,k∈Ŝ

d(φ(q), φ(fi,j,k)) (4.4)

4.3 Datasets

To evaluate image-to-video retrieval approaches under a common public frame-

work, there exist a number of public datasets.

4.3.1 Public Datasets

Early work in image-to-video retrieval conducted experiments and reported results

on private collections of videos (Sivic and Zisserman, 2003; Nister and Stewenius,

2006). However, for a standard comparison between different models and to

push performance in the field, publicly available datasets were introduced. Table

4.1 summarizes the existing public image-to-video retrieval collections:
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Name Lenght Domain #Queries Queries

CNN2h (Araujo et al., 2014) 2h Newscast 139 Websites, Camera

Stanford I2V (Araujo et al., 2015a) 1,079h Newscast 229 Websites

VB (Araujo et al., 2016) 1,079h Newscast 282 Camera

ClassX (Araujo et al., 2016) 408h Lectures 258 Slides

MoviesDB (Ours) 80h Movies 25,000 Camera

Tab. 4.1: Image-to-video retrieval datasets. For each dataset, we provide the
total duration, the domain, the number of queries and the type of query images.

• CNN2h (Araujo et al., 2014): a collection with 2 hours of newscast videos

and 139 query images. Query images are photos taken with an external

camera as well as related pictures collected from websites.

• Stanford I2V (Araujo et al., 2015a): a collection of newcast videos and

229 query images collected from news websites. There exist a light version

(SI2V-600k) and a large verion (SI2V-4M) with 160 and 1,079 hours of

video, respectively.

• VB (Araujo et al., 2016): same video collection as in Stanford I2V with

282 queries captured with an external camera while videos are played in a

screen. Some queries contain strong perspective distortion. As in Stanford

I2V, there are a light version (VB-600k) and a large version (VB-4M).

• ClassX (Araujo et al., 2016): a collection of lecture videos with 258 query

images. Query images are slides from the lectures. There are also a light

version (ClassX-600k) with 169 hours of video and a large version (ClassX-

1.5M) with 408 hours of video.

Although the collections listed above are in general large in terms of video

duration, the amount of query images in each dataset is relatively small. Moreover,

these collections contain videos from very specific domains (i.e. newscast and

lectures). In the next section, we introduce the MoviesDB, a dataset of movies

with a larger number of query images.
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4.3.2 MoviesDB

The MoviesDB is a collection of 40 movies with more than 25,000 query images

specifically designed to evaluate image-to-video retrieval systems.

Video collection

The MoviesDB contains 40 movies, with more than 7 million frames, and a total

duration of more than 80 hours. To ensure diversity in the dataset, we collect a

wide range of movie genres, from animation and fantasy to comedy or drama.

All the videos have at least 720 pixels width resolution. The shortest video in the

dataset is 1 hour 21 minutes and 46 seconds long, whereas the longest movie is 3

hours, 6 minutes and 32 seconds long. Each movie has at least 400 query images.

More details, as the duration of each movie, the resolution, the FPS rate, the

number of frames or the number of query images, are provided in Table 4.2.

Query images

Query images are captured by a Logitech HD Pro Webcam C920 while movies

are being played on a computer screen. We use a Matlab script to control both

the movie player and the webcam acquisition time. With this script, when the

webcam captures a new query image at a random timestamp, we save the number

of the frame that is being shown as a ground truth. To avoid delays produced by

the webcam, the video is paused a few seconds before acquiring a new image.

Query images have either 960 × 720 or 2304 × 1536 pixels resolution and are

captured randomly in a time lapse between 0 to 20 seconds. Some examples of

query images can be seen in Figure 4.2.
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Movie Length Resolution fps Frames Queries
12 Years a Slave 2:14:10 832x352 30 196572 723
2 Francs, 40 Pesetas 1:39:27 720x304 25 149195 548
300: Rise of an Empire 1:42:35 720x304 24 147590 541
A Single Man 173542 720x304 24 193008 418
Absolutely Anything 1:21:46 720x400 25 129816 437
American Hustle 2:18:04 720x304 24 198624 753
Ant-Man 1:57:15 720x384 30 211073 603
Big Fish 2:05:08 720x384 24 180035 648
Captain Phillips 2:12:25 720x304 24 190496 618
Casablanca 1:38:20 720x572 25 147483 565
Despicable Me 1:34:48 1280x696 24 136388 499
El Niño 2:16:02 720x320 24 195908 726
Family United 1:37:10 720x306 25 145768 525
Grave of the Fireflies 1:28:30 960x544 25 132750 463
Groundhog Day 1:36:58 720x432 24 145473 542
Harry Potter and the
Deathly Hallows: Part I

2:20:06 720x300 25 210165 548

Her 2:05:50 720x384 24 181027 507
Intolerable Cruelty 1:39:40 752x418 30 179234 544
Lee Daniels’ The Butler 2:12:04 720x384 24 171262 547
Magnolia 3:00:52 720x304 25 271313 948
Maleficent 1:37:28 720x304 24 140213 467
Marshland 1:39:59 720x316 25 149994 511
Match Point 1:58:54 720x384 25 178351 667
Neon Genesis Evangelion:
The End of Evangelion

1:26:49 848x480 25 130225 401

Out of Africa 2:41:02 720x384 24 231673 926
Pirates of the Caribbean:
At World’s End

2:41:35 720x576 25 241127 881

Puss in Boots 1:30:14 720x304 24 129816 436
Rise of the Planet
of the Apes

1:44:19 720x304 24 150072 556

Seven Pounds 2:03:05 720x300 24 177073 631
Spanish Affair 2 1:48:28 720x304 24 156042 586
The Body 1:45:19 720x304 25 157997 568
The Devil Wears Prada 1:49:20 832x352 30 196572 611
The Great Gatsby 2:21:42 720x304 24 203853 764
The Help 2:26:14 720x384 24 210387 813
The Hobbit:
The Desolation of Smaug

3:06:32 720x304 24 268357 1040

The Last Circus 1:40:58 720x404 30 181559 543
The Physician 2:34:46 720x304 24 222876 797
The Social Network 2:00:27 720x296 24 173277 626
The Wolf of Wall Street 2:59:52 720x304 24 258759 1027
Witching and Bitching 1:48:42 720x304 25 163069 588

Tab. 4.2: Details of the MoviesDB.
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Fig. 4.2: Examples of query images in the MoviesDB.
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Evaluation

In the MoviesDB, the performance is evaluated in terms of recall at 1 (R@1)

by considering all the frames that are similar to the annotated ground truth as

relevant elements, i.e. if the retrieved frame shares strong similarities with the

ground truth frame, it is considered a visual match. An example of a visual match

is shown in Figure 4.3.

(a) (b) (c)

Fig. 4.3: Visual similarities between frames: (a) Query image; (b) Ground truth
frame; (c) Retrieved frame, which is similar to ground truth frame and, thus, a
Visual Match.

We use SURF features (Bay et al., 2006) to find visual matches. Given a query

image, the frame retrieved by the system is compared against the ground truth

frame by matching their SURF features. The matching between SURF features

is performed as an all-vs-all search, where features in the retrieved frame, i, are

compared in terms of distance against features in the ground truth frame, j. Then,

the visual similarity score between a pair of frames is computed as:

sij = |{Matches}ij |
|{Features}i|

(4.5)

where

• {Matches}ij is the list of matching features between frame i and frame j,

where two features are a match when their distance is below a threshold.

• {Features}i is the list of features in frame i.

Chapter 4 Techniques for image-to-video retrieval 72



If sij is greater than a threshold, τ , then i is a visual match, VMi, of j and its

associated query:

VMi =


1 if sij > τ

0 otherwise
(4.6)

The overall performance for a set with Q query images is computed as:

R@1 = 1
Q

Q∑
i=1

VMi (4.7)

The linear comparison between frames that do not present any noise or perspec-

tive distortion is a task that SURF features can perform with high accuracy. To

measure the precision of this evaluation protocol, we manually annotate either if

a pair of frames (i.e. ground truth frame and retrieved frame) is a visual match

or not, along with its score. For different values of τ the True Positive Rate (TPR)

as well as the False Positive Rate (FPR) are computed as:

TPR = tp
tp + fn

(4.8)

FPR = fp
fp + tn

(4.9)

where

• tp is the number of true positives (i.e. visual match with score > τ)

• fp is the number of false positives (i.e. no visual match with score > τ)

• tn is the number of true negatives (i.e. no visual match with score ≤ τ)

• fn is the number of false negatives (i.e. visual match with score ≤ τ)

Figure 4.4 shows both the TPR and the FPR computed with the annotations of

615 pairs of frames and 406 different values of τ .
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Fig. 4.4: Precision of the evaluation method measured in terms of TPR and FPR
for 406 different threshold values and 615 pairs of frames.

We choose τ = 0.15, with TPR = 0.98 and FPR = 0, for computing visual matches

in the MoviesDB. Figure 4.5 shows examples of retrieved frames and their scores

with this method.

Fig. 4.5: Examples of scores between ground truth frames (left column) and
retrieved frames (right column) in the MoviesDB evaluation.
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4.4 Applications

Image-to-video retrieval has been successfully applied in fields such as video

search (Araujo et al., 2015a) and video bookmark (Chen et al., 2010). As

an alternative application, we propose a framework based on image-to-video

retrieval for video content augmentation. The main idea is shown in Figure 4.6.

Fig. 4.6: Video content augmentation with fashion items in a TV show.

Videos such as films and TV shows are a powerful marketing tool, especially

for the fashion industry, since they can reach thousands of millions of people

all over the world and impact on fashion trends. Spectators may find clothing

appearing in movies and television appealing and people’s personal style is often

influenced by the multimedia industry. Also, online video-sharing websites, such

as YouTube1, have millions of users generating billions of views every day and

famous youtubers are often promoting the latest threads in their videos.

Fashion brands are interested in selling the products that are advertised in movies,

television or YouTube. However, buying clothes from videos is not straightforward.

Even when a user is willing to buy a fancy dress or a trendy pair of shoes that

1https://www.youtube.com/
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appear in the latest blockbuster movie, there is often not enough information to

complete the purchase. Finding the item and where to buy it is, most of the times,

difficult and it involves time-consuming searches.

To help in the task of finding fashion products that appear in multimedia content,

some websites, such as Film Grab2 or Worn on TV3, provide catalogs of items that

can be seen on films and TV shows, respectively. These websites, although helpful,

still require some effort before actually buying the fashion product: users need

to actively remember items from videos they have previously seen and navigate

through the platform until they find them.

To retrieve fashion products from videos in an effortless and non-intrusive way,

we propose a framework based on image-to-video retrieval. By taking a picture

of the screen during video playback, the framework identifies the corresponding

frame of the video sequence and returns that frame augmented with the fashion

items in the scene. In this way, users can find a product as soon as they see it by

simple taking a photo.

Instead of retrieving products directly as in clothing retrieval (Liu et al., 2012;

Hadi Kiapour et al., 2015), we propose to first retrieve frames from the video

collection. The reasons are three-fold. Firstly, in standard clothing retrieval users

usually provide representative images of the object of interest (e.g. dresses in

front view, high-heeled shoes in side view, etc.), whereas in a movie, the view of

the object of interest cannot be chosen, and items might be partially or almost

completely occluded, such as the red-boxed dress in Figure 4.6. Secondly, clothing

retrieval usually requires to select a bounding box around the object of interest.

This is undesirable in video as it may distract user’s attention from the original

content. Finally, performing frame retrieval instead of product retrieval in videos

allows users to get the complete look of a character, including small accessories

such as earrings, watches or belts. Some of these items are normally very small,

2http://filmgarb.com/
3https://wornontv.net
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Fig. 4.7: Framework for video content augmentation based on image-to-video
retrieval. During the product indexing, fashion items and frames are associated in
an indexed database. Then, frames are indexed by using image-to-video retrieval
techniques. Finally, a query image is used to retrieve frames and their associated
fashion products.

sometimes almost invisible, and are very difficult to detect and recognize using

standard object retrieval techniques.

As shown in Figure 4.7, the framework consists on three phases. In the product

indexing, fashion items and frames from the video collection are related in

an indexed database. This process can be done manually (e.g. with Amazon

Mechanical Truck4) or semi-automatically with the support of a standard clothing

retrieval algorithm. Then, the training and the query phase are performed using

image-to-video retrieval techniques, as the ones presented in Chapter 5 and

Chapter 6, to extract and index spatio-temporal features from frames and detect

and identify shots in video segments.

4https://www.mturk.com
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5
Image-to-video retrieval based

on binary features

In this chapter, we address image-to-video retrieval by exploiting temporal redun-

dancy in local binary features, achieving a 42:1 compression ratio with respect to

non-aggregation methods while maintaining accuracy at similar levels.

5.1 Methodology

We propose an aggregation method for image-to-video retrieval based on the

temporal local aggregation of video features (see Figure 4.1), in which recurrent

local features in a video segment are aggregated to compress the temporal local

information. The main advantage of temporal local aggregation methods with

respect to spatio-temporal global aggregation methods, where a single compact

vector per video segment is computed, is a better retrieval accuracy at the expense

of a lower compression ratio and a slower search.

To improve compression and search time in temporal local aggregation methods,

we propose the system shown in Figure 5.1. In the training phase, we firstly reduce

the memory requirements by extracting and aggregating local binary features

(Section 5.1.1), as binary features require less memory storage than floating-point

local features such as SIFT and SURF. Moreover, when the Hamming distance

is applied, the matching between binary features is faster than computing the

Euclidean distance between standard local features (Miksik and Mikolajczyk,

2012). Secondly, to speed-up the computation time, we conduct a nearest

neighbours search by indexing the aggregated binary features in a kd-tree (Section
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Fig. 5.1: Block diagram of the local temporal aggregation system.

5.1.2). In the query phase (Section 5.1.3), binary features extracted from a query

image are used to find their nearest aggregated features in the kd-tree. To retrieve

the video shot the query belongs to, we implement a voting system using the

nearest aggregated features. For a more precise retrieval, a frame search within

all the frames in the retrieved video shot is conducted.

5.1.1 Local Temporal Aggregation of Binary Features

Our local temporal aggregation process is summarized in Figure 5.2.

Feature Extraction and Tracking

To detect recurrent local features in a video segment, hand-crafted binary features

(e.g. BRIEF, Calonder et al., 2010) are extracted from every frame in the video

collection and tracked along time by applying descriptor and spatial filters. The

tracking is performed in a bidirectional way so features within a track are unique,

i.e. each feature is only matched with up to two features: one in the previous

frame and one in the following frame.

The reasons for using local binary features instead of more popular local features,

such as SIFT, are two-fold. Firstly, Hamming distance for binary features is

faster to compute than Euclidean distance for floating-points vectors (Miksik and
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Fig. 5.2: Temporal aggregation of local binary features.

Mikolajczyk, 2012). Secondly, binary features are more stable over time than

SIFT, as shown in Figure 5.3, and hence, less information may be lost.

Shot Detection

Consecutive frames that share visual similarities are grouped into shots. The

boundaries of different shots are detected when two consecutive frames have no

common tracks. Each shot contains a set of tracks, each track representing the

trajectory of a particular feature along time.

Key Feature Aggregation

We define a key feature as the aggregation of all the features in the same track

into a single vector. Subsequently, each shot is then represented by a set of key

features, similarly to how frames are represented by a set of features. For each

track, a key feature is computed by using majorities (Grana et al., 2013). If

the majority value at a certain dimension of the features of the track is 1, then

associated key feature’s value at that dimension will be 1. Otherwise, the value

will be 0. To avoid adding noisy features to the system, only stable tracks longer

than a fixed number of frames are considered.
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(a) (b)

Fig. 5.3: Trajectories of tracks along a sequence of frames. Binary features are
more constant over time than SIFT features: (a) BRIEF; (b) SIFT.

5.1.2 Feature Indexing

To speed-up the search computation time, we use a kd-tree (Bentley, 1975) to

index the aggregated key features. A popular method for searching in binary

space is FLANN (Muja and Lowe, 2012), which uses multiple, randomly gener-

ated hierarchical structures. However, kd-trees have been shown to be highly

parallelizable (Aly et al., 2011), which is very suitable for large-scale solutions.

Thus, we propose to modify the basic kd-tree structure to handle binary features

and perform a fast search of aggregated key features.

In a kd-tree (Bentley, 1975), each decision node has an associated dimension,

a splitting value and two child nodes. For a query vector, if the value of in the

associated dimension is greater than the splitting value, the vector is assigned to

the left child; otherwise, the vector is associated to the right child. This process is

repeated at each node until a leaf node is reached.
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To deal with binary features, we modify the standard kd-tree so that each decision

node has an associated dimension, dim, such that descriptor vectors, d, with

d[dim] = 1 are assigned to the left child, and vectors with d[dim] = 0 are assigned

to the right child. The value dim is chosen such that the training data is split

more evenly in that node, i.e. its entropy is maximum. Note that this criterion is

similar to the one used in the ID3 algorithm (Quinlan, 1986) for the creation of

decision trees, but where the splitting attribute is the one with smallest entropy.

Leaf nodes have as many as SL indices pointing to the features that ended up in

that node. This kd-tree building algorithm is described in Algorithm 1.

Algorithm 1 Kd-tree building with binary features building

1: D: set of binary descriptors
2: procedure BUILD-TREE(D)
3: if |D| < SL then
4: return Leaf(D)
5: else
6: dim = arg minx |0.5−#{d in D : d[x] = 1}/|D||
7: Dleft = d in D: where d[dim] = 1
8: Dright = d in D: where d[dim] = 0
9: return Tree(dim, build-tree(Dleft), build-tree(Dright))

5.1.3 Search and Retrieval

In the query phase, binary features are extracted from an input image and

assigned to its nearest set of key features by searching down the kd-tree. A first-in

first-out (FIFO) queue keeps record of the already visited nodes in the kd-tree

to backtrack B times and explore them later. We use a queue system to ensure

that even if some of the bits in a query vector are wrong, the vector can reach its

closest neighbours by exploring unvisited nodes latter.

Key features in the leaf nodes found in the search are added to a candidates

list, so the candidate vectors with the minimum Hamming distance to the query

vector are their nearest neighbours key features. The kd-tree search algorithm

using binary features is described in Algorithm 2.
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Each nearest neighbour key feature found in the kd-tree votes for the shot it

belongs to, and the most voted shot is retrieved. For a fine-grained retrieval,

the frames in the retrieved shot are compared against the input image using

linear search, i.e. the candidate frame with the minimum distance to the query

image is retrieved. Shots are commonly groups of a few hundreds of frames, thus

the computation can be performed very rapidly when applying the Hamming

distance.

Algorithm 2 Kd-tree search with binary features

1: T : kd-tree
2: q: binary query vector
3: B: maximum number of backtracking steps
4: procedure SEARCH-TREE(T , q, B)
5: Q← T.Root . add root node to FIFO queue
6: Candidates← [] . empty list of candidate vectors
7: while B > 0 do
8: Node← pop(Q) . get node from Q
9: while Node not leaf node do

10: Q← T.Node
11: if d[Node.dim] = 1 then
12: Node← Node.leftChild
13: else
14: Node← Node.rightChild

15: Candidates← Node.D . features to candidates
16: B ← B − 1
17: Dnn ← d ∈ Candidates| arg mind Hamming(d,q)
18: return Dnn

5.2 Evaluation

To evaluate the proposed system, we perform two different experiments. In the

first one, our image-to-video retrieval system is compared against other retrieval

systems. In the second one, we evaluate the performance of the system when

scaling up the video collection.
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5.2.1 Implementation Details

We evaluate our method using the MoviesDB. Frames and query images are

resized to 720 pixels in width. Binary features are computed by using ORB

detector (Rublee et al., 2011) and BRIEF extractor (Calonder et al., 2010). In

the tracking module, only matches with a Hamming distance less than 20 and a

spatial distance less than 100 pixels are considered, whereas in the key feature

computation algorithm, only tracks longer than 7 frames are used. The default

values for the kd-tree are set at SL = 100 and B = 50.

5.2.2 Retrieval Results

First, we compare our system against other retrieval baselines using the movie

The Devil Wears Prada in the MoviesDB, which consists of 196,572 frames with a

total duration of 1 hour 49 minutes and 20 seconds and 615 query images. The

other systems under evaluation are:

• Bi-BruteForce: Brute force search using binary features. Query images are

matched against all frames and all features in the database using Ham-

ming distance. Brute Force system is only used as an accuracy benchmark,

since each query take, in average, 46 minutes to be processed. Temporal

information is not exploited.

• Bi-KdTree: Kd-Tree search using binary features, in which all BRIEF features

from all frames are indexed using a binary kd-tree structure. Temporal

information is not exploited.

• Bi-KeyFrame-KdTree: Key frame extraction method (Sun et al., 2008), in

which temporal information is used to reduce the amount of frames of each

shot into a smaller set of key frames. Key frames are chosen as the ones

at the peaks of the distance curve between frames and a reference image
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R@1

Method Feat Mem B=10 B=50 B=100 B=250

Bi-BruteForce 85 2591 ————— 0.98 —————

Bi-KdTree 85 2591 0.90 0.94 0.96 0.97

Bi-KeyFrame-KdTree 25 762 0.91 0.92 0.93 0.93

SIFT-Aggregation-KdTree 0.9 446 0.61 0.67 0.70 0.73

Bi-Aggregation-KdTree 2 61 0.92 0.93 0.94 0.94

Tab. 5.1: Comparison between different systems on a single movie. Number of
features (Feat) is given in millions and memory (Mem) is given in megabytes.

computed for each shot. For each key frame, binary features are extracted

and indexed in a binary kd-tree structure.

• Bi-Aggregation-KdTree: Our proposed method using binary features, tem-

poral aggregation based on majorities and a binary kd-tree for indexing

aggregated binary features.

• SIFT-Aggregation-KdTree: SIFT variant of our method, in which SIFT

features are extracted and tracked along time. To aggregate tracks we

compute the average value. Aggregated features are indexed in a standard

kd-tree with a priority queue as in Aly et al., 2011.

Results are detailed in Table 5.1. R@1 is similar for all the methods based on

binary features. However, the number of features and the memory requirements

are drastically reduced when the temporal information is used. In our proposed

model (Bi-Aggregation-KdTree), by exploiting temporal redundancy between

frames, the memory is reduced by 42.5 times with respect to Bi-BruteForce and

Bi-KdTree and by 12.5 times with respect to Bi-KeyFrame. Theoretically, that

means that when implemented in a distributed kd-tree system as the one in Aly

et al., 2011, where the authors were able to process up to 100 million images, our

system might be able to deal with 4,250 million frames, i.e. more than 20,000

movies and 40,000 hours of video. Accuracy with the aggregated SIFT features
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(SIFT-Aggregation-KdTree) is considerably worse than with the aggregated binary

features (Bi-Aggregation-KdTree), probably because of the variability on the

temporal tracks, as shown in Figure 5.3.

5.2.3 Large-Scale Results

We explore the scalability of our framework by increasing the size of the video

collection and using the whole MoviesDB, with 40 movies and more than 25,000

query images. Results are shown in Table 5.2. By using our temporal aggregation

method, the amount of data is reduced from 7 million frames and 3,040 million

features to only 116,307 shots and 58 million key features. Even so, the total

number of key features in the 40 movie collection is still smaller than the 80

million features that, in average, a single movie contains. The total accuracy

over the 40 movies is 0.87, reaching values of 0.98 and 0.97 in The Help and

Intolerable Cruelty movies, respectively. Movies with very dark scenes such as

Captain Phillips and Pirates of the Caribbean 3 perform the worst, as fewer

descriptors can be found in those kinds of dimly lit images.

Figure 5.4 shows the evolution of accuracy when the size of the database increases

for five different movies. Most of the movies are not drastically affected when

the number of frames in the database is increased from 200,000 to 7 million.

For example, both Intolerable Cruelty and 12 Years a Slave maintain almost a

constant accuracy for different sizes of the collection. Even in the worst case

scenario, The Devil Wears Prada movie, the loss in accuracy is less than a 8.5%.

This suggests that our image-to-video retrieval system is enough robust to handle

large-scale video collections without an appreciable loss in performance.
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Title Frames Feat Shots KFeat R@1
12 Years a Slave 193008 86M 1409 1.6M 0.94
2 Francs, 40 Pesetas 149195 69M 1126 1.4M 0.95
300: Rise of an Empire 147590 68M 2110 1.2M 0.83
A Single Man 173542 53M 3584 1.1M 0.90
Absolutely Anything 129816 56M 1684 1.1M 0.95
American Hustle 198624 83M 2047 1.5M 0.88
Ant-Man 211073 91M 5057 1.8M 0.81
Big Fish 180035 74M 3682 1.5M 0.90
Captain Phillips 190496 59M 7578 0.6M 0.67
Casablanca 147483 71M 881 1.5M 0.96
Despicable Me 136388 65M 1886 1.2M 0.92
El Niño 195908 86M 3424 1.3M 0.82
Family United 145768 61M 2152 1.3M 0.90
Grave of the Fireflies 132750 60M 1399 1.2M 0.94
Groundhog Day 145473 62M 1174 1.2M 0.93
Harry Potter 210165 60M 7187 1.3M 0.78
Her 181027 53M 5131 1.1M 0.93
Intolerable Cruelty 179234 86M 1306 2M 0.97
Lee Daniels’ The Butler 171262 65M 2413 1.3M 0.91
Magnolia 271313 100M 3806 2M 0.89
Maleficent 140213 57M 3355 1M 0.81
Marshland 149994 60M 2310 1.1M 0.90
Match Point 178351 81M 918 1.7M 0.91
Neon Genesis Evangelion 130225 53M 4914 1.1M 0.90
Out of Africa 231673 108M 2595 2.3M 0.93
Pirates of the Caribbean 241127 108M 3695 1.7M 0.74
Puss in Boots 129816 54M 2835 0.8M 0.80
Planet of the Apes 150072 69M 2482 1.1M 0.82
Seven Pounds 177073 70M 2878 1.3M 0.88
Spanish Affair 2 156042 75M 1270 1.5M 0.96
The Body 157997 71M 2048 1.5M 0.89
The Devil Wears Prada 196572 85M 1822 2M 0.85
The Great Gatsby 203853 98M 3427 1.7M 0.88
The Help 210387 101M 1726 2.2M 0.98
The Hobbit 268357 120M 4762 1.8M 0.83
The Last Circus 181559 85M 3126 1.4M 0.81
The Physician 222876 86M 3051 1.7M 0.85
The Social Network 173277 63M 2804 1.3M 0.89
The Wolf of Wall Street 258759 123M 3060 2.3M 0.87
Witching and Bitching 163069 66M 4193 0.8M 0.74
Total 7M 3040M 116307 58M 0.87

Tab. 5.2: Results on the MoviesDB using a local temporal aggregation method
based on binary features and kd-trees.
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Fig. 5.4: Accuracy vs Database size for 5 different movies.

5.3 Conclusions

In this chapter, we proposed a system to aggregate local features in videos using

binary descriptors. Local temporal aggregation methods usually obtain better

performance than global temporal aggregation methods at the expense of an

increased search time and more memory storage. We efficiently reduced memory

requirements by using binary features and fast indexing techniques.

We aggregated recurrent binary descriptors in a video segment using majorities,

and we indexed aggregated features in a kd-tree. At query time, the kd-tree

was used to find the nearest aggregated features, which voted for the shot they

belonged to. In the experiments, the amount of data to be processed could be

reduced by a factor of 42.5 with respect to linear search, whereas accuracy was

maintained at similar levels. We also showed that our system scaled well when

the number of frames increased from 200,000 to 7 million.

However, despite the improvements in memory storage, the proposed approach

needs to perform multiple searches per query image to retrieve a single video

frame. In the next chapter, we present a global temporal aggregation system, in

which only one search per query image is performed.
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6
Image-to-video retrieval based

on deep learning

This chapter approaches image-to-video retrieval by using deep learning tech-

niques. Instead of aggregating multiple local features per frame as in the previous

chapter, here we propose to encode multiple frames into a single compact rep-

resentation, which allows us to perform a single search per query image. Our

method is specifically trained for image-to-video retrieval and outperforms previ-

ous work on global temporal aggregation methods.

6.1 Methodology

Temporal global aggregation methods for image-to-video retrieval are usually

more efficient than methods based on the temporal aggregation of local features,

as only one search per query image needs to be performed (see Figure 4.1). In

this chapter, we propose a deep learning architecture for learning asymmetric

spatio-temporal visual embeddings specifically for image-to-video retrieval. We

use a spatio-temporal encoder (Section 6.1.1) to project images and videos into a

common embedding space, as depicted in Figure 6.1, where a standard similarity

function can be applied to rank videos according to their similarity with respect a

query image (Section 6.1.2). To learn the network parameters, a contrastive or

margin loss function is computed between pairs of images and video clips during

training (Section 6.1.3).
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Fig. 6.1: In temporal global aggregation methods for image-to-video retrieval,
image and video global embeddings obtained from query images and video clips
are projected into a common embedding space to compute similarities and find a
specific video clip.

6.1.1 Spatio-Temporal Encoder

The spatio-temporal encoder architecture is shown in Figure 6.2. With a spatial

encoder based on convolutional neural networks (CNN), query images and video

frames are independently mapped into image embeddings. Image embeddings

from frames within the same video clip are then input into a temporal encoder,

which is based on recurrent neural networks (RNN), to obtain a set of video or

shot embeddings describing the visual content of the whole scene.

Spatial Encoder

To capture the spatial visual content of query images and frames and compute

meaningful image embeddings, we use RMAC image descriptor (Tolias et al.,

2016), which is based on max-pooling the output of the last convolutional layer

of a pre-trained CNN over several regions. A detailed description of the RMAC

algorithm can be found in Section 2.1.3.
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Fig. 6.2: Spatio-temporal encoder to learn compact embeddings for image-to-
video retrieval. Images and frames are mapped into image embeddings with the
Spatial Encoder. Videos are mapped into video embeddings with the Temporal En-
coder. A margin loss function between image and video embeddings is computed
to learn the weights of the architecture.

Temporal Encoder

We capture the temporal visual information using a temporal encoder model. As

detailed in Section 4.2, videos are composed of a set of frames, shots and scenes.

Commonly, frames belonging to the same shot are highly correlated. With our

temporal encoder, we take advantage of this inner temporal structure of videos to

first, identify shots within a video and then, encode the visual information within

a shot with a recurrent neural network.

Shot Boundary Detection: We split up each video into a collection of shots by

using a shot boundary detection (SBD) algorithm. The aim of the SBD algorithm

is to detect groups of similar looking frames to encode them into a single video

embedding. Although there exist many SBD algorithms (Hassanien et al., 2017;

Gygli, 2017) to detect different kinds of transitions between shots, such as fade

in, fade out, wipes or dissolves, to aggregate features for image-to-video retrieval

we are only interested in hard cuts, i.e. when two shots are put one after the

other without any transition effect.
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Fig. 6.3: Shot boundary detection algorithm; Left: Shot boundaries detected
when the distance between consecutive frames is high; Right: Frames from each
detected shot.

To detect hard cuts, we use Algorithm 3. We compute the distance between each

pair of consecutive frame embeddings along the duration of a video and assign a

shot boundary when the distance is higher than a predefined threshold, Th. An

example of the frame distances computed with the SBD algorithm along with

sample frames from each detected shot can be seen in Figure 6.3.

Algorithm 3 Shot Boundary Detection with RMAC

1: procedure SBD(video)
2: ListSB ← []
3: i← 0
4: F← getFrame(video, i) . Get first frame
5: v0 ← RMAC(F) . Compute image embedding
6: while hasFrame(video, i+ 1) do
7: F← getFrame(video, i+ 1) . Get new frame
8: v← RMAC(F) . Compute image embedding
9: dist← 1− v0·v

‖v0‖2‖v‖2
. Distance between consecutive frames

10: if dist > Th then
11: push(ListSB, i) . Boundary if dist > Th
12: v0 ← v
13: i← i+ 1
14: return ListSB

Recurrent Neural Networks: To aggregate the temporal visual information of

frames within a shot, we use a RNN. We explore different RNN models, such as

long short-term memory networks (LSTM, Hochreiter and Schmidhuber, 1997)

and gated recurrent units (GRU, Cho et al., 2014). At each state of the RNN, we
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input each of the frame embeddings belonging to the shot. The RNN captures

the salient temporal information in the sequence by using at each state both the

current frame embedding and the output of the previous frame embeddings. The

output of the last state is further processed with a fully connected layer, a tanh

non-linearity and a `2-normalization to obtain the video or shot embedding.

Formally, let h|X| = RNN(X) be the output of the last state of a recurrent neural

network that processes the sequence of frame embeddings X = [x1,x2, · · · ,x|X|].

The shot embedding is computed as vX = norm(tanh(W · h|X| + b)), where

norm(z) = z
‖z‖2

, tanh(z) = ez−e−z

ez+e−z and W and b are the weight matrix and the

bias vector of the last fully connected layer, respectively. The shot embedding is

set to have the same dimensionality, K, as the image embedding.

6.1.2 Search and Retrieval

To perform image-to-video search and retrieval, we rank videos according their

similarity to the query image. We compute image-shot similarity between an

image embedding, u, and a shot embeddings, v, as the cosine similarity:

simshot(u,v) = u · v
‖u‖2‖v‖2

(6.1)

The visual similarity between a query embedding, q and a specific video, V, with

a set of shot embeddings, V = {vk} with k ≤ |V|, is the max-pooled image-shot

similarity between the query and all the shot embeddings in the video:

simvideo(q,V) = max(simshot(q,vk)) (6.2)

6.1.3 Margin Loss Function

We train the model using pairs of images and video shots, where images are

frames from the same video collection as shots. For the i-th training pair, we
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denote as ui to the image embedding representing the frame and as vi to the

shot embedding representing the shot. For each pair, we automatically assign a

positive or a negative label, yi, as:

yi =


1 if ui and vi belong to the same shot

0 otherwise
(6.3)

We compute the loss of a pair as the cosine similarity with a margin, ∆, between

the image and shot embeddings:

Loss(ui,vi) = yi(1− cos(ui,vi)) + (1− yi)(max(0, cos(ui,vi)−∆)) (6.4)

6.2 Evaluation

We evaluate the spatio-temporal encoder and compare the model against state-of-

the-art temporal global aggregation methods for image-to-video retrieval.

6.2.1 Datasets

To learn the parameters of our model, we use a related video collection. Then, we

evaluate the model using some of the image-to-video retrieval datasets introduced

in Section 4.3.

Training Dataset

To train our model we use the data from the LSMDC dataset (Rohrbach et al.,

2017). The LSMDC dataset contains 202 movies split into 128,118 short video

clips of about 5 seconds. We remove the movies that overlap with our evaluation

datasets and select a subset of 40 movies with 26,495 clips for training and 10
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Fig. 6.4: Data graph of frames in which nodes are frames and connections are
matches. In the cleaning process, we keep frames in the strongest component
(solid green lines) and remove the rest (dashed red lines).

movies with 7,440 clips for validation, to speed up the training. We use clips

provided in LSMDC as training shots.

As clips in LSMDC do not exactly correspond to video shots (i.e. each clip is a

short sequence which may contain frames from one or more shots), we conduct a

cleaning process (Gordo et al., 2017) to keep only frames from the longest shot

for each clip. We extract SIFT features (Lowe, 2004) from all the frames in the

clip and perform an all-versus-all feature matching between all possible pairs of

frames in the video clip. For each pair of frames, we assign a score as the number

of shared descriptors over the total number of descriptors, keeping only scores

greater than 0.25. Next, we build a graph where each node corresponds to a

frame and each connection corresponds to their assigned score. We extract the

strongest component of the graph and remove the nodes (i.e. frames) that do not

belong to it. See Figure 6.4 for an example of graph.

Evaluation Datasets

We evaluate the proposed model in the following datasets, which are detailed in

Section 4.3.2:
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SI2V-600k VB-600k MoviesDB

Fig. 6.5: Query images and video clip examples for each of the evaluation
datasets.

• SI2V-600k (Araujo et al., 2015a): 164 hours of newscast videos with 3,401

clips and 229 images from news websites.

• VB-600k (Araujo et al., 2016): same videos as in SI2V-600k with 282

queries captured with an external camera.

• MoviesDB: the lighter version, which consists on a single movie (The Devil

Wear Prada), with about 2 hours duration and 615 query images.

Examples of each of the evaluation datasets are shown in Figure 6.5.

6.2.2 Implementation Details

Frames are extracted at three frames per second rate and resized to 1024 pixels

width. In the spatial encoder, RMAC representations are obtained with a VGG16

network (Simonyan and Zisserman, 2015) pre-trained for image classification,

without the last fully connected layers. The dimensionality of the image embed-

dings, K, is 512. PCA-whitening is implemented as a fully connected layer and its

weights are computed using American Beauty movie from the training collection.

In the temporal encoder, the dimensionality of the hidden state of the RNN is 512,

as well as the number of filters in the last fully connected layer. The maximum

number of frames per shot used in the RNN is 50. At training time, ∆ is set
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SI2V-600k VB-600k

Method dim mAP R@1 mAP R@1

Edge Histogram [1] - 0.154 0.372 - -

JDC [1] - 0.174 0.384 - -

PHOG [1] - 0.223 0.450 - -

AlexNet FC6 [2] 4,096 0.484 - 0.182 -

AlexNet FC7 [2] 4,096 0.363 - 0.157 -

VGG16 FC6 [2] 4,096 0.344 - 0.070 -

VGG16 FC7 [2] 4,096 0.316 - 0.048 -

FV [2] 4,096 0.715 - 0.704 -

RMAC 512 0.718 0.834 0.643 0.592

Tab. 6.1: Comparison between different image representations methods when
frames are processed independently without temporal aggregation (i.e. image-to-
image retrieval). [1] are implementations from Oliveira Barra et al., 2016 and [2]

from Araujo and Girod, 2017.

to 0.1. We assign 20% of training pairs as positive and 80% as negative. The

spatial encoder is frozen. We optimize the parameters of the temporal encoder

using Adam (Kingma and Ba, 2015) with backpropagation, batch size of 512 and

learning rate of 0.0001. In the SBD algorithm, Th is experimentally chosen as

0.5. Query images are resized to 960 pixels width.

6.2.3 Spatial Encoder Results

We first evaluate the performance of the RMAC representation as the spatial

encoder of the model. We compare results obtained with different image rep-

resentation methods when frames are processed as independent images (i.e.

image-to-image retrieval). For a fair comparison, none of the networks are

retrained or fine-tunned.

Results are summarized in Table 6.1. RMAC obtains comparable performance to

the best reported results (FV in Araujo and Girod, 2017) by using 8 times less
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SI2V-600k VB-600k MoviesDB

Method mAP R@1 mAP R@1 R@1

Max-Pooling 0.038 0.066 0.033 0.011 -

Sum-Pooling 0.152 0.275 0.316 0.262 -

Temporal Encoder (LSTM) 0.602 0.773 0.580 0.525 0.833

Temporal Encoder (GRU) 0.606 0.777 0.572 0.514 0.833

Tab. 6.2: Comparison between different techniques to aggregate image embed-
dings (RMAC) from multiple frames (i.e. image-to-video retrieval).

memory. When compared against other deep learning features (AlexNet FC6,

AlexNet FC7, VGG16 FC6 and VGG FC7) RMAC is, by far, superior.

6.2.4 Temporal Encoder Results

Next, we evaluate our proposed temporal encoder. RMAC is used to obtain frame

embeddings. We evaluate two versions of the temporal encoder, one based on

LSTM (Hochreiter and Schmidhuber, 1997) and another one based on GRU (Cho

et al., 2014) and we compare them against simple aggregation baselines, such as

Max-Pooling and Sum-Pooling. Max-Pooling consists on computing the maximum

value of the frame embeddings for each dimension and Sum-Pooling consist on

summing up all the frame embeddings into a single vector.

Results are shown in Table 6.2. Max-Pooling and Sum-Pooling are not evaluated

on MoviesDB as there is only one video in the collection. Our temporal encoder

is considerably superior to both baselines. In SI2V-600k, the temporal encoder

based on GRU obtains the best performance. In VB-600k, LSTM is superior. With

respect to MoviesDB, both LSTM and GRU perform equally well.
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Method mAP R@1

Sum-Pool, No SBD 0.152 0.275

Sum-Pool, Rand. SBD 0.322 0.589

Sum-Pool, Our SBD 0.596 0.764

LSTM, No SBD 0.121 0.319

LSTM, Rand. SBD 0.390 0.616

LSTM, Our SBD 0.602 0.773

Tab. 6.3: Analysis of the SBD algorithm in the SI2V-600k dataset.

Shot Boundary Detection

We evaluate the contribution of the shot boundary detection algorithm by con-

sidering three different scenarios: no shot boundary detection (No SBD), shot

boundaries are selected randomly (Rand. SBD), and our proposed shot boundary

detection algorithm based on RMAC distances (Our SBD). For a more extended

comparison, we use both Sum-Pooling and LSTM as temporal aggregation meth-

ods.

Results are reported in Table 6.3. Detecting shots is always beneficial, even if

the shots are detected randomly, as the number of visual embeddings per video

is increased. Moreover, when our SBD is used, the performance of the overall

system is improved considerably with respect the Rand. SBD. It also can be seen

that the LSTM encoder is superior to sum-pooling aggregation method when

shots are considered.

6.2.5 Comparison with State-of-the-Art

Finally, we compare our asymmetric spatio-temporal embeddings with state-of-

the-art compact methods in image-to-video retrieval. For a fair comparison, we

only report results of compact aggregation methods, that is, methods that encode

multiple frames into a single compact vector rather than using multiple local
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Method dim SI2V-600k VB-600k

Scene FV* (DoG) [1] 65,536 0.473 -

Scene FV* [2] 65,536 0.500 0.622

Sum-Pool AlexNet FC6 [2] 4,096 0.071 0.012

Sum-Pool AlexNet FC7 [2] 4,096 0.065 0.013

Sum-Pool VGG16 FC6 [2] 4,096 0.067 0.013

Sum-Pool VGG16 FC7 [2] 4,096 0.069 0.011

Spatio-Temporal-LSTM (Ours) 512 0.602 0.580

Spatio-Temporal-GRU (Ours) 512 0.606 0.572

Tab. 6.4: Comparison with state-of-the-art. Results provided as mAP. [2] are
implementations from Araujo et al., 2015b and [2] from Araujo and Girod, 2017.

vectors per query or super high-dimensional vectors. Also, as previous work

is mostly based on non-trainable architectures, for a fair comparison we keep

our spatial encoder with the original pre-trained weights (i.e. no additional

training).

Accuracy

Results are detailed in Table 6.4. Our techniques based on LSTM and GRU outper-

form reported methods in terms of both memory and accuracy. When compared

with previous state-of-the-art (Scene FV*), our embeddings are superior on the

SI2V-600k dataset and obtain comparable results in VB-600k. This performance

is remarkable considering that our methods are using embeddings 128 times

smaller than Scene FV* (512 versus 65,536 dimensions).

Computational Cost

In Araujo and Girod, 2017, memory requirements are reported in SI2V-4M and

VB-4M datasets, which are larger versions of SI2V-600k and VB-600k with 1080

hours of video. Their simplest baseline with FV* and no temporal aggregation
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needed 20.59 gigabytes (GB) of memory to encode the whole dataset, whereas

their Scene FV* required 3.01 GB. Their best performing method based on super

high-dimensional Bloom Filters (33.5 million binary dimensional vectors) needed

10.76 GB of memory. With our approach, we are able to encode 160 hours

of video in SI2V-600k and VB-600k datasets in only 0.15 GB. With a simple

conversion, for the larger versions (1080 hours of video), we would need just

about 1 GB of memory, which is a compression of 20 times with respect to the

baseline, 10 times with respect to the Bloom Filters approach and 3 times with

respect to Scene FV*.

6.3 Conclusions

In this chapter, we proposed a model to obtain asymmetric spatio-temporal em-

beddings for large-scale image-to-video retrieval. We introduced an asymmetric

architecture to project images and videos into a common embedding space, so

that they can be easily matched with a cosine similarity. We computed image

embeddings with a spatial encoder based on convolutional neural networks.

Video embeddings were obtained by using a temporal encoder based on recurrent

neural networks. We trained our model with relevant pairs of images and videos

using a margin loss function.

Experiments in different image-to-video retrieval datasets showed that our spatio-

temporal encoder is superior to the state-of-the-art methods both in terms of

accuracy and computational cost. In contrast to the method introduced in Chapter

5, this model aggregates the spatio-temporal information in a video shot into a

single vector. Query images are also represented by a single vector, which makes

the retrieval task easier and faster than when using local features.

Chapter 6 Image-to-video retrieval based on deep learning 101



Part IV

Cross-Modal Retrieval



7
Semantic Art Understanding

with Text-Image Retrieval

In this part, we study cross-modal retrieval, which is the retrieval problem in

which non-visual queries are used to search for visual elements in a dataset (see

Figure 1.2). In particular, this chapter is focused on text-image retrieval, where

images in a visual collection are found according to a textual query, and vice

versa. Recently, with the latest advancements in the fields of computer vision

(CV) and natural language processing (NLP), text-image retrieval has attracted

a lot of attention, especially with natural images and text captions (Wang et al.,

2017). In this chapter, however, we address image-text retrieval from a different

domain perspective by studying high-level image recognition in art.

We refer to this high-level recognition problem as semantic art understanding. An

example is shown in Figure 7.1. In contrast to natural image understanding, there

is not a wide volume of previous work in understanding images in the domain of

art, which turns into a lack of datasets for common and public benchmark. We

address this problem by firstly, introducing SemArt, a cross-modal dataset in the

art domain; secondly, presenting the Text2Art challenge, a text-image retrieval

task for the SemArt dataset; and thirdly, proposing a number of cross-modal

retrieval models, which achieves recognition levels close to human evaluation.
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In this painting the church in Auvers has been transformed by the artist into a vision using form and colour. 
Painted in portrait format, the church towers up before the onlooker like a fortification. The path leading to it 
forks in the foreground into two narrow paths passing the church on either side. On the path to the left, her 
back turned toward us, a peasant woman is walking into the distance. The path is bathed in light, while the 
church is viewed against the backdrop of a dark blue sky that merges with the black-blue of the night sky at 
the edges of the picture. The brushwork is restless and full of movement, and the forms of the church are 
distorted in the Expressionist manner.

PAINTING IMAGES

ARTISTIC COMMENT

Fig. 7.1: Example of semantic art understanding with text-image retrieval. In
the top, artistic comment that describes context (yellow), technique (blue) and
content (red) of a painting. In the bottom: painting images relevant to the artistic
comment; in green, the painting the comment belongs to.

7.1 Related Work

7.1.1 Text-Image Retrieval

Retrieving images from text and vice versa is an active field of research within

the computer vision community (Nam et al., 2017; Salvador et al., 2017; Wang

et al., 2018). Before the introduction of NLP techniques, early work approached

text-image retrieval by applying CBIR methods (Ordonez et al., 2011), that

is, computing similarities between a query image and a set of images from a

collection, which have been previously associated with textual descriptions. In

this way, given a query image, the sentence associated to the most similar image

was retrieved. However, performing image-to-image retrieval to find text is very

restrictive, as text sentences need to be previously associated to images in order

to be searchable.
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Nowadays, most text-image retrieval approaches use both CV and NLP tools to

project images and sentences into a common latent space where visual and textual

representations can be compared in terms of similarity (Wang et al., 2017). One

of the first approaches along these lines (Farhadi et al., 2010) represented both

images and sentences with a triplet of (object, action, scene). To find image-

sentence correspondences, the authors computed similarities between triplets. A

drawback of this approach is that it is limited to use a fixed number of objects,

actions and scenes to project the data to.

A popular method for projecting data from two different distributions into a

common latent space is Canonical Correlation Analysis (CCA, Hotelling, 1936).

CCA learns the weights of the projection matrix by maximizing the correlation

between the projected vectors of the two data sources. Despite the simplicity of

the method, Gong et al., 2014a showed that normalized CCA (Gong et al., 2014b)

along with state-of-the-art visual and textual features outperforms more complex

methods, such as Wsabie (Weston et al., 2011) in text-image retrieval. Although

CCA is a linear method, non-linear projections can be achieved by using kernel

CCA (Bach and Jordan, 2002), as in Hodosh et al., 2013. However, CCA methods

do not scale well to large-scale collections of images, as the covariance matrix

computation rapidly incurs a high memory cost. To overcome this issue, deep

CCA (Andrew et al., 2013; Yan and Mikolajczyk, 2015) optimizes the covariance

matrix by using deep learning techniques.

As an alternative to CCA, many deep learning models have been proposed (Karpa-

thy et al., 2014; Nam et al., 2017; Salvador et al., 2017; Wang et al., 2018). These

methods were based on optimizing a ranking loss function by using matching and

non-matching image-sentence pairs or triplets. For example, Karpathy et al., 2014

proposed to find alignments between objects from images and fragments from

sentences and compute pairwise distances to estimate a similarity score; Nam

et al., 2017 introduced an attention mechanism to focus on specific fragments of

images and sentences to gather the essential information from both modalities;
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(a) (b)

Fig. 7.2: Paintings versus natural images. Paintings are figurative representations,
which commonly exhibit some layers of abstraction and symbolism, whereas
natural images represent reality as we see it. (a) The Roaster by Pablo Picasso
(1983) versus a photograph of rooster; (b) The Church at Auvers by Vincent van
Gogh (1890) versus a photograph of the church.

Salvador et al., 2017 proposed a trijoint model using images, recipes and ingre-

dients to find food images from textual recipes, and vice versa; and Wang et al.,

2018 implemented a bi-directional ranking loss by considering the distances from

image to text as well as from text to image.

Most of the aforementioned methods implemented systems to find natural images

by given a description of the scene. On the contrary, we propose to apply text-

image retrieval for semantic art understanding in the domain of fine-art paintings.

As already noted in previous work (Crowley and Zisserman, 2014a; Crowley and

Zisserman, 2014b; Crowley et al., 2015), paintings are substantially different

from natural images in several aspects. As an illustration, Figure 7.2 shows two

examples in which the same object or scene is being represented in a painting

and in a natural images.

The main differences between studying natural images and art images are three-

fold. Firstly, paintings, unlike natural images, are figurative representations of

people, objects, places or situations which may or may not correspond to the

real world. Secondly, the study of fine-art paintings usually requires previous

knowledge about history of art, artistic styles as well as contextual information

about the subjects represented. Thirdly, paintings commonly exhibit one or more

layers of abstraction and symbolism which creates ambiguity in interpretation.
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Thus, to perform semantic art understanding, a deep analysis not only about the

elements of the image but also about its style, author, influences and context is

required.

7.1.2 Semantic Art Understanding

With the digitalization of large collections of fine-art paintings and the emergence

of publicly available online art catalogs such as WikiArt1 or the Web Gallery

of Art2, computer vision researchers became interested in applying computer

vision techniques for automatic art understanding. So far, work in automatic art

understanding has been mostly focused on painting classification (Carneiro et al.,

2012; Mensink and Van Gemert, 2014; Mao et al., 2017) and image retrieval

(Carneiro et al., 2012; Seguin et al., 2016) to either detect the style, year or

author of a specific fine-art painting or to find relevant paintings according to a

query.

Early work (Johnson et al., 2008; Shamir et al., 2010; Carneiro et al., 2012; Khan

et al., 2014) proposed methods based on handcrafted visual features to identify

an author and/or a specific style in a piece of art. Datasets used in these kinds

of approaches, such as PRINTART (Carneiro et al., 2012) and Painting-91 (Khan

et al., 2014), were rather small, with 988 and 4,266 painting images, respectively.

The larger Rijksmuseum dataset (Mensink and Van Gemert, 2014), containing

112,039 images from artistic objects, was also introduced for multi-class predic-

tion, although only 3,593 of the pictures were from fine-art paintings.

With the success of CNN in large-scale image classification (Krizhevsky et al.,

2012), deep features obtained from CNNs replace handcrafted features in many

computer vision applications, including painting image classification (Bar et al.,

2014; Karayev et al., 2014; Saleh and Elgammal, 2015; Tan et al., 2016; Ma et al.,

2017; Mao et al., 2017). In these kinds of classification methods, images from

1http://www.wikiart.org
2https://www.wga.hu/
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Dataset #Paintings Meta Text Task

PRINTART (Carneiro et al., 2012) 988 3 7 Classification, Retrieval

Painting-91 (Khan et al., 2014) 4,266 3 7 Classification

Rijksmuseum (Mensink and Van Gemert, 2014) 3,593 3 7 Classification

Wikipaintings (Karayev et al., 2014) 85,000 3 7 Classification

Paintings (Crowley and Zisserman, 2014a) 8,629 7 7 Object Recognition

Face Paintings (Crowley et al., 2015) 14,000 7 7 Face Retrieval

VisualLink (Seguin et al., 2016) 38,500 3 7 Instance Retrieval

Art500k (Mao et al., 2017) 554,198 3 7 Classification

SemArt 21,383 3 3 Semantic Retrieval

Tab. 7.1: Datasets for art understanding. Meta and Text columns state whether
image metadata and textual information are provided, respectively.

paintings were fed into a CNN to predict its artistic style or author by studying

its visual aesthetics. Also, to learn the weights of deep CNN models, large-scale

datasets were made publicly available (Karayev et al., 2014; Mao et al., 2017).

Besides painting classification, other work has been focused on exploring search

of artistic paintings. In Carneiro et al., 2012, monochromatic painting images

were retrieved by using artistic-related keywords, whereas in Seguin et al., 2016

a pre-trained CNN was fine-tuned to find paintings with similar artistic motifs.

Crowley et al., 2015 explored domain transfer to retrieve image of portraits

from real faces, in the same way as Crowley and Zisserman, 2014a and Crowley

and Zisserman, 2016 explored domain transfer to perform object recognition in

paintings.

A summary of the existing datasets for fine-art understanding is shown in Table

7.1. In essence, previous work studied art from an aesthetics point of view to clas-

sify paintings according to their author or style, to find relevant images according

to a query input or to identify objects in artistic representations. However, as

shown in Figure 7.1, semantic art understanding involves also other processes,

such as identifying relations between elements in the scene, the artistic influences

of the author or the historical context of the work. To understand such complex

processes we propose to interpret fine-art paintings in a semantic way. To that
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end, we collect a cross-modal dataset for semantic art understanding that, unlike

previous datasets, not only contains fine-art images and their attributes, but also

semantic descriptions.

7.2 SemArt Dataset

In this section, we introduce the SemArt dataset, a cross-modal corpus that

provides artistic comments along with fine-art paintings and their attributes

for studying semantic art understanding. In order to push the performance of

CV algorithms in image recognition and semantic are understanding, we make

SemArt dataset publicly available at:

http://noagarciad.com/SemArt/

7.2.1 Data Collection

To create the SemArt dataset, we collect artistic data from the Web Gallery

of Art (WGA), a website with more than 44,809 images of European fine-art

reproductions between the 8th and the 19th century. WGA provides links to all

their images in a downloadable comma separated values file (CSV). In the CSV

file, each image is associated with some attributes or metadata: author, author’s

birth and death, title, date, technique, current location, form, type, school and

time-line. Following the links provided in the CSV file, we only collect images

from artworks whose field form is set as painting, as opposite to images of other

forms of art such as sculpture or architecture.

We create a script to collect artistic comments for each painting image, as they

are not provided in the aforementioned CSV file. We omit images that are not

associated to any comment and we remove irrelevant metadata fields, such as

author’s birth and death and current location. The final size of the cleaned

collection is downsampled to 21,384 triplets, where each triplet is formed by an
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Field Values Samples Most Common

Author 3,281 21,383 GOGH, Vincent van

Title 14,902 21,383 Still-Life

Technique 13,403 21,358 Fresco

Date 3,124 18,989 c. 1500

Type 10 21,383 Religious

School 26 21,383 Italian

Timeframe 22 21,383 1601-1650

Tab. 7.2: SemArt metadata details. For each metadata field in the dataset:
number of different values, total number of samples and the most common value.

image, a text and a number of attributes. Examples from the SemArt dataset are

depicted in Figure 7.3.

7.2.2 Data Analysis

For each sample, metadata is provided as a set of seven fields, which describe the

basic attributes of the painting: Author, Title, Date, Technique, Type, School and

Timeframe. Details about the different fields can be found in Table 7.2.

In total, there are 3,281 different authors, the most frequent one being Vincent

van Gogh with 327 paintings. There are 14,902 different titles in the dataset,

with 38.8% of the paintings presenting a non-unique title. Among all the titles,

Still-Life and Self-Portrait are the most common ones. Technique and Date fields

are not available for all samples, but provided for completeness. Type field

classifies paintings according to ten different genres, such as religious, landscape

or portrait. There are 26 artistic schools in the collection, Italian being the most

common, with 8,860 paintings and Finnish the least frequent with just 5 samples.

Also, there are 22 different timeframes, which are periods of 50 years evenly

distributed between 801 and 1900. The distribution of values over the fields Type,

School and Timeframe is shown in Figure 7.4.
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Title: Still-Life
Author: Willem van Aelst
Type: Still-Life
School: Dutch
Timeframe: 1651-1700

The painting depicts a 
still-life with roses, tulips 
and other flowers resting 
on a ledge. It 
demonstrates the 
elegance, refinement, and 
technical brilliance 
cultivated during the 
painter's formative years 
in Italy.

Title: Grape Harvest Girl
Author: Ljubomir 
Aleksandrova
Type: Genre
School: Other
Timeframe: 1851-1900

In Croatia, Bosnia and 
Herzegovina, and in 
northern Serbia, 
depending on the kind of 
harvest, people celebrate 
harvest season by 
dressing themselves with 
fruits of the harvest.

Title: Avenue de Clichy - 
Five O'Clock in the 
Evening
Author: Louis Anquetin
Type: Landscape
School: French
Timeframe: 1851-1900

This painting is said to 
have inspired Van Gogh in 
painting his famous Café 
Terrace at Night.

Title: The Cook
Author: Giuseppe 
Arcimboldo
Type: Portrait
School: Italian
Timeframe: 1551-1600

In the background a 
biblical scene (Mary in the 
house of Martha) can be 
seen. Beuckelaer was a 
pupil of his uncle Pieter 
Aertsen. This painting 
shows some similarities 
with the paintings of 
Aertsen.

Title: View of Florence from Villa 
San Firenze, near San Miniato
Author: Edward Lear
Type: Landscape
School: English
Timeframe: 1851-1900

This view of Florence is one 
of a number of views by Lear 
based upon on the spot 
sketches he produced in 1861

Title: Ships Moored Off a 
Rocky Coastline
Author: Abraham Willaerts
Type: Landscape
School: Dutch
Timeframe: 1601-1650

This landscape depicts ships moored 
off a rocky coastline with fishermen 
unloading their catch.

Fig. 7.3: Samples from the SemArt dataset. Each sample is a triplet of (image,
comment, attributes).
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Timeframe School Type

Fig. 7.4: Distribution of samples in Timeframe, School and Type attributes.

With respect to the artistic comments, the vocabulary set follows the Zipf’s law

(Manning et al., 1999). Most of the comments are relatively short, with almost

70% of the them containing 100 words or less. Images are provided in different

aspect ratios and sizes. The dataset is randomly split into training, validation and

test sets with 19,244, 1,069 and 1,069 triplets, respectively.

7.3 Method

To address semantic art understanding, we first introduce the Text2Art challenge

for the SemArt dataset (Section 7.3.1). We then propose a number of models

to map paintings and artistic comments into a common semantic space (Section

7.3.2), thus enabling artistic semantic comparisons between images and texts.

7.3.1 Text2Art Challenge

Given a collection of artistic samplesK, the k-th sample inK is given by the triplet

of (imgk, comk, attk), being imgk the artistic image, comk the artistic comment

and attk the artistic attributes. Images, comments and attributes are input into

specific encoding functions, fimg, fcom, fatt, to map raw data from the corpus

into vector representations, ik, ck, ak, as:

ik = fimg(imgk;φimg) (7.1)
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ck = fcom(comk;φcom) (7.2)

ak = fatt(attk;φatt) (7.3)

where φimg, φcom and φatt are the parameters of each encoding function.

As comment encodings, ck, and attribute encodings, ak, are both from textual

data, a joint textual vector, tk can be obtained as:

tk = ck ⊕ ak (7.4)

where ⊕ is vector concatenation.

The transformation functions, gvis and gtext, can be defined as the functions that

project the visual and the textual encodings into a common cross-modal space.

The projected vectors pkvis and pktext are then obtained as:

pkvis = gvis(ik; θvis) (7.5)

pktext = gtext(tk; θtext) (7.6)

being θvis and θtext the parameters of each transformation function.

For a given similarity function d, the similarity between any text (i.e. pair of

comments and attributes) and any image in K is measured as the distance

between their projections:

d(pktext,p
j
vis) = d(gtext(tk; θtext), gvis(ij ; θvis)) (7.7)
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In semantic art understanding, the aim is to learn fimg, fcom, fatt, gvis and gtext

such that images, comments and attributes from the same sample are mapped

closer in terms of d than images, texts and attributes from different samples:

d(pktext,pkvis) < d(pktext,p
j
vis) for all k, j ≤ |K| (7.8)

and

d(pktext,pkvis) < d(pjtext,pkvis) for all k, j ≤ |K| (7.9)

To evaluate semantic art understanding, we propose the Text2Art challenge as

a cross-modal retrieval problem. Within Text2Art, we define two tasks: text-to-

image retrieval and image-to-text retrieval. In text-to-image, the aim is to find the

most relevant painting image in the collection, img∗ ∈ K, given a query comment

and its attributes:

img∗ = arg min
imgj∈K

d(pktext,p
j
vis) (7.10)

In the image-to-text task, when a painting image is given, the aim is to find the

comment and the attributes, com∗ ∈ K and att∗ ∈ K , that are most relevant to

the visual query:

com∗, att∗ = arg min
comj ,attj∈K

d(pjtext,pkvis) (7.11)

7.3.2 Models

We propose several models to learn meaningful textual and visual encodings

and transformations for semantic art understanding. First, images, comments

and attributes are encoded into visual and textual vectors. Then, a multi-modal

transformation model is used to map these visual and textual vectors into a

multi-modal common space where a similarity function is applied.
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Visual Encoding

We represent each painting image as a visual vector, ik, using CNNs. We use

different CNN architectures, such as VGG16 (Simonyan and Zisserman, 2015),

different versions of ResNet (He et al., 2016) and RMAC (Tolias et al., 2016).

• VGG16: convolutional neural network introduced in Simonyan and Zis-

serman, 2015 designed for image classification. It contains 13 3x3 con-

volutional layers and three fully-connected layers stacked on top of each

other. We use the output of one of the fully connected layers as the visual

encoding.

• ResNet: architecture introduced in He et al., 2016. It uses shortcut con-

nections to connect the input of a layer to the output of a deeper layer. In

this way, deeper architectures are easier to train. There exist several models

depending on the number of layers, such as ResNet50 and ResNet152 with

50 and 152 layers, respectively. We use the output of the last layer as the

visual encoding.

• RMAC: visual descriptor introduced in Tolias et al., 2016 for image retrieval.

The activation map from the last convolutional layer from a CNN model is

max-pooled over several regions to obtain a set of regional features. The

regional features are normalized, PCA-whitened and normalized, sum-up

together and normalized once again to obtain the final visual representation.

Textual Encoding

With respect to the textual information, comments are encoded into a comment

vector, ck, and attributes are encoded into an attribute vector, ak. To get the joint

textual encoding, tk, both vectors are concatenated.
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Comment Encoding: To encode comments into a comment vector, ck, we first

build a comment vocabulary, VC . VC contains all the alphabetic words that appear

at least ten times in the training set. The comment vector is obtained using three

different techniques: a comment bag-of-words (BOWc), a comment multi-layer

perceptron model (MLPc) and a comment recurrent model (LSTMc).

• BOWc: each comment is encoded as a one-hot frequency-inverse document

frequency (tf-idf) weighted vector. The tf-idf algorithm weights each word

in the comment by its relevance within the corpus.

• MLPc: each comment is encoded as a one-hot tf-idf-weighted vector. The

one-hot vector is then fed into a fully connected layer with a tanh activation

function3 and a normalization layer. The output of the normalization layer

is used as the comment vector.

• LSTMc: each sentence in a comment is encoded into a sentence vector

using a 2, 400 dimensional pre-trained skip-thought model (Kiros et al.,

2015). Sentence vectors are input into a long short-term memory network

(LSTM, Hochreiter and Schmidhuber, 1997) and the last state of the LSTM

is normalized and used as the comment vector.

Attribute Encoding: We use the attribute field Title to augment the textual

content in our model. We propose three different techniques to encode a title

into an attribute vector representation, ak: an attribute bag-of-words (BOWa)

an attribute multi-layer perceptron (MLPa) and an attribute recurrent model

(LSTMa).

• BOWa: as in comments, titles is encoded as a one-hot tf-idf-weighted vector

using a title vocabulary, VT . VT is built with all the alphabetic words in the

titles of the training set.

3tanh(z) = ez−e−z

ez+e−z
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Fig. 7.5: Cross-modal transformation models for mapping textual and visual
representations into a common semantic space.

• MLPa: also as in comments, one-hot encoded titles are fed into a fully

connected layer with a tanh activation and a normalization. The output of

the normalization layer is used as the attribute vector.

• LSTMa: in this case, each word in a title is fed into an embedding layer

followed by a LSTM network. The output of the last state of the LSTM is

normalized and used as the attribute vector.

Cross-Modal Transformation

The visual and textual encodings, ik and tk respectively, encode visual and textual

data into two different spaces. We use a cross-modal transformation model to

map the visual and textual representations into a common semantic space. In

this common space, textual and visual information can be compared in terms of

the semantic similarity with the function d. We propose three different models,

which are illustrated in Figure 7.5.

• CCA: Normalized Canonical Correlation Analysis (CCA, Gong et al., 2014b)

is a linear approach for projecting data from two different sources into

a common space by maximizing the normalized correlation between the

projected data. The CCA projection matrices are learnt by using training
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pairs of samples from our corpus. At test time, the textual and visual

encodings from a test sample are projected using these CCA matrices.

• CML: in the Cosine Margin Loss model (CML) a deep learning architecture

is trained end-to-end to learn the visual and textual encodings and their

projections all at once. In this model, each image encoding is fed into a fully

connected layer followed by a tanh activation function and a normalization

layer to project the visual feature, ij , into a D-dimensional space, obtaining

the projected visual vector pjvis. Similarly, each textual vector tk, is input

into another network with identical layer structure (fully connected layer

with tanh activation and normalization) to map the textual feature into the

same D-dimensional space, obtaining the projected textual vector pktext. We

train the CML model with both positive (k = j) and negative (k 6= j) pairs

of textual and visual data. We use the cosine similarity with maring as the

loss function:

LCML(pvisk ,ptextj ) =


1− cos(pvisk ,ptextj ), if k = j

max(0, cos(pvisk ,ptextj )−m), if k 6= j

(7.12)

where cos is the cosine similarity between two normalized vectors and m is

the margin hyperparameter.

• AMD: in the Augmented Metadata model (AMD) the network is informed

with attribute data for an extra alignment between the visual and the

textual encodings in the artistic domain. The AMD model consists on a deep

learning architecture that projects both visual and textual vectors into the

common semantic space. As in the CML model, image and textual encodings

are transformed into D-dimensional vectors using fully connected layers

and the loss between the cross-modal transformations is computed using a

cosine margin loss. The extra metadata information is used to train a pair

of classifiers, as shown in Figure 7.5: AMD Model. Each classifier consists
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of a fully connected layer without activation and is trained using a standard

cross entropy classification loss function:

LMETA(x, class) = − log
(

exp(x[class])∑
j exp(x[j])

)
(7.13)

The AMD classifiers contribute to the total loss of the model in addition to

the cosine margin loss. The total loss of the model is then computed as:

LAMD(pktext,p
j
vis, lpk

text
, l
pj

vis
) = (1− 2α)LCML(pktext,p

j
vis)

+αLMETA(pktext, lpk
text

)

+αLMETA(pjvis, lpj
vis

)

(7.14)

where lpk
text

and l
pj

vis
are the class labels of the k-th text and the j-th image,

respectively, and α is the weight of the classifier loss.

7.4 Evaluation

We now evaluate the proposed models in the Text2Art challenge. We perform

independent experiments for each of the three main modules, i.e. visual encoding,

textual encoding and cross-modal transformation. We also conduct a human

evaluation in the SemArt dataset as a benchmark for future research and to

compare the proposed algorithms against human performance.

7.4.1 Implementation Details

In the visual encoding part, each network is initialized with its standard pre-

trained weights for image classification. Images are scaled down to 256 pixels per

side and randomly cropped into 224 × 224 patches. Visual data is augmented by

randomly flipping images horizontally.
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In the textual encoding part, the dimensionality of the LSTM hidden state for

comments is 1,024, whereas in the LSTM for titles is 300. The title vocabulary

size is 9,092. Skip thoughts dimensionality is set to 2,400.

For the deep learning architectures, we use Adam optimizer and the learning rate

is set to 0.0001, m to 0.1 and α to 0.01. Training is conducted in mini batches

of 32 samples. Cosine similarity is used as the distance function d in all of our

models.

In the Text2Art challenge, painting images are ranked according to their similarity

to a given text, and vice versa. The ranking is computed on the whole set of

test samples and results are reported as median rank (MR) and recall rate at K

(R@K), with K being 1, 5 and 10. MR is the value separating the higher half of the

relevant ranking position amount all samples, so the lower the better. Recall at

rate K is the rate of samples for which its relevant image is in the top K positions

of the ranking, so the higher the better.

7.4.2 Results Analysis

Visual Encoding

We first evaluate the transferability of visual features from the natural image

domain to the artistic domain. In this experiment, texts are encoded with the

BOWc approach with VC = 3, 000. As cross-modal transformation model, a 128-

dimensional CCA is used. We extract visual encodings from networks pre-trained

for classification of natural images without further fine-tunning or refinement.

For the VGG16 model, we extract features from the first, second and third fully

connected layer (VGG16FC1 , VGG16FC2 and VGG16FC3). For the ResNet models,

we consider the visual features from the output of the networks (ResNet50
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and ResNet152). Finally, RMAC representation is computed using a VGG16, a

ResNet50 and a ResNet152 (RMACVGG16 , RMACRes50 and RMACRes152).

Results are detailed in Table 7.3. As semantic art understanding is a high-level

task, it is expected that representations acquired from deeper layers perform

better (Girshick et al., 2014), as in the VGG16 models, where the deepest layer

of the network obtains the best performance. RMAC features respond well when

transferring from natural images to art, although ResNet models obtain the best

performance. Considering these results, we use ResNets as visual encoders in the

following experiments.

Encoding Text-to-Image Image-to-Text

Img Dim R@1 R@5 R@10 MR R@1 R@5 R@10 MR

VGG16 FC1 4,096 0.069 0.129 0.174 115 0.061 0.129 0.180 121

VGG16 FC2 4,096 0.051 0.097 0.109 278 0.051 0.085 0.103 275

VGG16 FC3 1,000 0.101 0.211 0.285 44 0.094 0.217 0.283 51

ResNet50 1,000 0.114 0.231 0.304 42 0.114 0.242 0.318 44

ResNet152 1,000 0.108 0.254 0.343 36 0.118 0.250 0.321 36

RMAC VGG16 512 0.092 0.206 0.286 41 0.084 0.202 0.293 44

RMAC Res50 2,048 0.084 0.202 0.293 48 0.097 0.215 0.288 49

RMAC Res152 2,048 0.115 0.233 0.306 44 0.103 0.238 0.305 44

Tab. 7.3: Visual encoding results. Transferability of visual features from natural
image classification to the Text2Art Challenge.

Textual Encoding

We then compare the performance between the different text encoding models.

In this experiment, images are encoded with a ResNet50 network and the CML

model is used to learn the mapping of the visual and the textual encodings into a

common 128-dimensional space.

The different encoding methods are comapred in Table 7.4. The best performance

is obtained when using the simple bag-of-words approach both for comments and

attributes (BOWc and BOWa), although the multi-layer perceptron model (MLPc
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Encoding Text-to-Image Image-to-Text

Com Att R@1 R@5 R@10 MR R@1 R@5 R@10 MR

LSTMc LSTMa 0.053 0.162 0.256 33 0.053 0.180 0.268 33

MLPc LSTMa 0.089 0.260 0.376 21 0.093 0.249 0.363 21

MLPc MLPa 0.137 0.306 0.432 16 0.140 0.317 0.436 15

BOWc BOWa 0.144 0.332 0.454 14 0.138 0.327 0.457 14

Tab. 7.4: Comparison between different text encodings in the Text2Art Challenge.

and MLPa) obtain similar results. Models based on recurrent networks (LSTMc

and LSTMa) are not able to capture the insights of semantic art understanding.

These results are consistent with Wang et al., 2018 work, which shows that text

recurrent models perform worse than non-recurrent methods for cross-modal

tasks that do not require text generation.

Cross-Modal Transformation

Finally, we compare the three proposed cross-modal transformation models: CCA,

CML and AMD. For the AMD approach, we use four different attributes to inform

the model: Type (AMDT), TimeFrame (AMDTF), School (AMDS) and Author

(AMDA). ResNet50 is used to encode visual features.

Results are shown in Table 7.5. Random ranking results are provided for reference.

Overall, the best performance is achieved with the CML model with the textual

bag-of-words encodings. CCA achieves the worst results among all models, which

suggests that linear transformations are not able to adjust properly to the task.

Adding extra information to the CML model does not lead to further improvement,

and in some cases (AMDTF) it may even be harmful. We suspect that this might

be due to a lack of enough samples in some of the attributes of the dataset.

Some qualitative results, both positive and negative, are shown in Figures 7.6 and

7.7, respectively. The rankings are computed with the CML model with ResNet50
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Technique Text-to-Image Image-to-Text

Model Com Att R@1 R@5 R@10 MR R@1 R@5 R@10 MR

Random - - 0.0008 0.004 0.009 539 0.0008 0.004 0.009 539

CCA MLPc MLPa 0.117 0.283 0.377 25 0.131 0.279 0.355 26

CML BOWc BOWa 0.144 0.332 0.454 14 0.138 0.327 0.457 14

CML MLPc MLPa 0.137 0.306 0.432 16 0.140 0.317 0.436 15

AMDT MLPc MLPa 0.114 0.304 0.398 17 0.125 0.280 0.398 16

AMDTF MLPc MLPa 0.117 0.297 0.389 20 0.123 0.298 0.413 17

AMDS MLPc MLPa 0.103 0.283 0.401 19 0.118 0.298 0.423 16

AMDA MLPc MLPa 0.131 0.303 0.418 17 0.120 0.302 0.428 16

Tab. 7.5: Comparison between cross-modal transformation models in the
Text2Art Challenge.

as visual encoding and bag-of-words as text encoding. In the positive examples,

not only the ground truth painting is ranked within the top five paintings in the

evaluation collection, but also all the images within the top five are semantically

similar to the query text. In the unsuccessful examples, although the ground truth

image is not ranked in the top positions of the list, the algorithm returns images

that are semantically meaningful to fragments of the content contained in the

text, which indicates how challenging the task is.

7.4.3 Human Evaluation

We design a task in Amazon Mechanical Turk4 for evaluating human performance

in the Text2Art challenge. For a given artistic text, which includes comment,

title, author, type, school and timeframe, standard human evaluators (i.e. not art

experts) are asked to choose the most appropriate painting from a pool of ten

images.

The task has two different levels: easy, in which the pool of images is chosen

randomly from all the paintings in test set, and difficult, in which the ten images

in the pool share the same type (i.e. portraits, religious, landscapes, etc.). For

4https://www.mturk.com/
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each level, evaluators are asked to perform the task in 100 artistic texts. Accuracy

is measured as the ratio of correct answers over the total number of answers.

Results are shown in Tables 7.6 and 7.7. Human performance is considerably

high, reaching a total accuracy of 88.9% in the easiest set of images. Even for

humans, there is a drop in performance between the easy and the difficult level,

mostly because images from the same type contain more similar artistic comments

than images from different types.

We evaluate two models in the same data split as humans, a CCA model and a

CML model. The CML model based on bag-of-words and ResNet50 encodings is

able to correctly find the relevant image in the 75% of the samples in the easy

set and in the 62% of the cases in the difficult task. There is only ten points

of difference between CML model and human evaluation. This suggests that,

although there is still room for improvement, meaningful representations for

semantic art understanding are being obtained from the proposed models.

Technique Text-to-Image

Model Img Com Att Land Relig Myth Genre Port Total

CCA ResNet152 MLPc MLPa 0.708 0.609 0.571 0.714 0.615 0.650

CML ResNet50 BOWc BOWa 0.917 0.683 0.714 1 0.538 0.750

Human - - - 0.918 0.795 0.864 1 1 0.889

Tab. 7.6: Models and human evaluation in the easy set.

Technique Text-to-Image

Model Img Com Att Land Relig Myth Genre Port Total

CCA ResNet152 MLPc MLPa 0.600 0.525 0.400 0.300 0.400 0.470

CML ResNet50 BOWc BOWa 0.500 0.875 0.600 0.200 0.500 0.620

Human - - - 0.579 0.744 0.714 0.720 0.674 0.714

Tab. 7.7: Models and human evaluation in the difficult set.

Chapter 7 Semantic Art Understanding with Text-Image Retrieval 124



Title: Still-Life of Apples, Pears and Figs in a Wicker Basket on a Stone Ledge
Comment: The large dark vine leaves and fruit are back-lit and are sharply silhouetted against
the luminous background, to quite dramatic effect. Ponce’s use of this effect strongly indicates the
indirect influence of Caravaggio’s Basket of Fruit in the Pinacoteca Ambrosiana, Milan, almost 50
years after it was created.

0.778 0.772 0.767 0.754 0.754

Title: A Saddled Race Horse Tied to a Fence
Comment: Horace Vernet enjoyed royal patronage, one of his earliest commissions was a group
of ten paintings depicting Napoleon’s horses. These works reveal his indebtedness to the English
tradition of horse painting. The present painting was commissioned in Paris in 1828 by Jean
Georges Schickler, a member of a German based banking family, who had a passion for horse
racing.

0.755 0.732 0.718 0.662 0.660

Title: Portrait of a Girl
Comment: This painting shows a girl in a yellow dress holding a bouquet of flowers. It is a
typical portrait of the artist showing the influence of his teacher, Agnolo Bronzino.

0.870 0.848 0.847 0.827 0.825

Title: The Kreuzkirche in Dresden
Comment: A few years later, during his second stay in Saxony, Bellotto depicted the demolition of
this Gothic church. There exists an almost identical version in the Gemldegalerie, Dresden.

0.841 0.834 0.803 0.800 0.799

Fig. 7.6: Qualitative positive results. For each text (i.e. title and comment), the
top five ranked images, along with their score, are shown. The ground truth
image is in green.
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Title: Brunette with Bare Breasts
Comment: The 1870s were rich in female models for Manet: the Brunette with
Bare Breasts, the Blonde with Bare Breasts and the Sultana testify to it.

rank 28, 0.445

0.640 0.622 0.605 0.572 0.569

Title: Battle of the Gabbard
Comment: The naval Battle of the Gabbard, also known as the Battle of Gabbard
Bank, the Battle of the North Foreland or the second Battle of Nieuwpoort took
place on 12-13 June 1653 during the First Anglo-Dutch War near the Gabbard
shoal off the coast of Suffolk, England between fleets of the Commonwealth of
England and the United Provinces. In Dutch the battle is known as the Zeeslag bij
Nieuwpoort.The picture shows the Dutch flagship Brederode, right, in action ...

rank 38, 0.486

0.756 0.720 0.680 0.660 0.646

Title: Virgin and Child with the Young St John the Baptist
Comment: The stylistic characteristics of this painting, such as rounded faces
and narrow, elongated eyes seem to be a general reflection of the foreign
presence in Genoese painting at this time.

rank 17, 0.690

0.754 0.751 0.730 0.727 0.721

Fig. 7.7: Qualitative negative results. For each text, the ground truth image is
shown next to it, along with its ranking position and its score. The top five ranked
images are shown with their ranking scores.
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7.5 Conclusions

In this chapter, we addressed cross-modal retrieval by studying semantic art

understanding with text-image retrieval.

We first introduced the SemArt dataset, the first corpus of fine-art paintings for

semantic art understanding. In SemArt, each image is provided with metadata

information and an artistic comment. Artistic comments can describe any artistic

information in the painting, such as its content, techniques or context. We also

designed the Text2Art challenge based on text-image retrieval to evaluate the

performance of semantic art understanding, whereby given an artistic text, a

relevant image is found, and vice versa.

Additionally, we proposed several models for semantic art understanding and

we compared their performance in the Text2Art challenge. We showed that

for visual encoding, ResNet is the model that performs the best. For textual

encoding, recurrent models perform worse than a multi-layer preceptron or a

simple bag-of-words. We also studied models for projecting the visual and textual

encodings into a common semantic space. We obtained the best results with a

neural network trained with a cosine margin loss.

Finally, we conducted experiments to compare machine performance against

standard human evaluators in two different levels of difficulty. Current approaches

are not able to reach human levels of art understanding yet, although we showed

that these algorithms are learning meaningful representations for semantic art

understanding. We made the SemArt dataset publicly available to encourage

future research in the field.
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Part V

Conclusion and Final Remarks



8
Conclusion

The aim of this dissertation was to study visual retrieval in its different modalities.

In particular, we study three main categories of visual retrieval: (1) symmetric

visual retrieval, in which queries and elements in the collection are from the same

type of visual data (Chapter 3); (2) asymmetric visual retrieval, in which queries

and elements in the collection are from different type of visual data (Chapters

4, 5 and 6); and (3) cross-modal retrieval, in which queries and elements in

the collection are from different data types, including visual and non-visual

objects (Chapter 7). Here, we conclude the dissertation by outlining our main

contributions and identifying future lines of research.

8.1 Contributions

Symmetric Visual Retrieval

In Part II, we addressed asymmetric visual retrieval by studying content-based

image retrieval. In standard image retrieval methods, visual features are used to

represent images with either hand-crafted or deep learning approaches. In these

methods, visual similarity between a pair of images is estimated with a standard

metric function between their visual features. However, standard metrics are rigid

and limited. To overcome some of their limitations and to fit the data distribution

in a better way, we trained a neural network to estimate similarity scores on top

of visual representations.
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Experiments conducted in Chapter 3 showed that our method was able to capture

visual similarity better than other techniques, mostly because of its non-metric

nature. We also introduced a real end-to-end trainable architecture for image

retrieval, which takes image pixels as input and, after processing the information

through all the layers of the model, returns a similarity score as output.

In summary, with respect to symmetric visual retrieval, we showed that the use

of a similarity network can push performance in image retrieval systems on top

of high-quality image features, by only training the last few layers of the model

and without fine-tunning the whole deeper architecture.

Asymmetric Visual Retrieval

In Part III, asymmetric visual retrieval was studied with a focus on image-to-video

retrieval. In image-to-video retrieval, static visual features from query images

are used to find a relevant scene or timestamp in a video collection. As videos

contain spatio-temporal visual features, asymmetric techniques for processing

videos and images are required.

In Chapter 4, we introduced a dataset for image-to-video retrieval, the MoviesDB,

with the largest number of query images in an image-to-video retrieval collection

until now. We also introduced a framework to find fashion products in videos

based on image-to-video retrieval. We addressed image-to-video retrieval from

two different perspectives. In Chapter 5, we proposed to aggregate recurrent

local features in videos to reduce the amount of data to be processed whereas in

Chapter 6, we encoded global spatio-temporal information using convolutional

and recurrent neural networks.

Local temporal aggregation methods for image-to-video retrieval commonly

obtain better performance than global temporal aggregation methods at the

expense of an increased search time and more memory storage. In Chapter 5, we
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overcame these challenges by proposing a solution to efficiently reduce memory

requirements by aggregating binary features and indexing them using kd-trees.

Despite these improvements, the approach proposed in Chapter 5 needed to

perform as many searches as visual features found in the query image in order to

retrieve a scene from the video collection. In Chapter 6, in contrast, we presented

a global temporal aggregation system, in which only one search per query image

was performed. This system was based on an asymmetric architecture to project

images and videos into a common embedding space. Experiments conducted in

Chapter 6 showed that our spatio-temporal encoder was superior to other global

temporal aggregation methods based on hand-crafted features.

In summary, we introduced two different methods for aggregating temporal

information in videos to perform image-to-video retrieval. The first one was

based on the aggregation of local binary features, which obtained high accuracy

rates but performed multiple searches per query image. The second method was

based on deep learning techniques to aggregate global spatio-temporal features

into a single vector representation per video segment, which simplified the search

process and outperformed previous global aggregation methods.

Cross-Modal Retrieval

In Part IV, we addressed cross-modal retrieval in the specific domain of semantic

art understanding. Cross-modal retrieval, especially text-image retrieval, has

been widely studied in the domain of natural images and text captions. However,

in Chapter 7, we proposed cross-modal and text-image retrieval techniques for

art understanding.

We introduced the SemArt dataset, the first cross-modal corpus for semantic art

understanding with artistic images, attributes and artistic comments. We also
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introduced the Text2Art challenge based on text-image retrieval, where a query

comment was used to find its relevant image and vice versa.

To address cross-modal retrieval in art understanding, we proposed and evaluated

several models for encoding paintings, texts and for projecting cross-modal data

into a common semantic space. We also conducted experiments with human

evaluators to compare machine versus human performance. We showed that

current approaches are not far from human accuracy and they extract meaningful

representations from the artistic cross-modal dataset.

8.2 Future Work

This work was focused on exploring multi-modal visual retrieval problems, es-

pecially symmetric, asymmetric and cross-modal retrieval. The outcome of this

research can be further explored in future work both to study novel applications

and to improve current performance.

8.2.1 Similarity Networks

In this work, we were able to show consistent improvements in content-based

image retrieval datasets through the use of our proposed similarity networks.

These results could encourage future research on similarity networks to create

more accurate and generalizable models. Some topics that could be explored in

future research are:

1. Domain adaptation. As similarity estimation is a problem-dependent task,

similarity networks do not transfer well across different domains. Future

research could study novel approaches to minimize the impact of this phe-

nomenon via transfer learning, domain adaptation and zero-shot learning

mechanisms.
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2. Task generalization. Similarity estimation between a pair of objects is a

common task within different visual retrieval modalities. Future work could

study the adaptation of these kinds of networks to other retrieval tasks such

as video-to-video retrieval, image-to-video retrieval or text-image retrieval.

8.2.2 Asymmetric Visual Retrieval

In asymmetric visual retrieval, we studied temporal feature aggregation through

image-to-video retrieval. In future research, temporal aggregation methods could

address the following topics:

1. Processing Time. The temporal aggregation methods proposed in this work

are able to successfully reduce memory requirements in large-scale datasets.

However, the architectures used to aggregate redundant visual features are

not cheap in terms of processing time. Future research could study how to

reduce computation time to create fast and efficient compact visual features

for asymmetric visual retrieval.

2. Task transfer. Our proposed temporal aggregation methods were specially

designed for image-to-video retrieval datasets. It would be interesting to

explore further adaptation of these methods to other asymmetric visual re-

trieval tasks, such as video-to-image retrieval in video content augmentation

applications.

8.2.3 Semantic Art Understanding

Research conducted in this work showed encouraging results in the field of

semantic art understanding. Although the performance obtained so far is still

below human accuracy, future research could explore how to bridge the gap

between machine and human evaluation. Some interesting directions towards

that end are:
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1. Style versus content analysis. Identifying the visual features that represent

the style of a painting versus the ones that correspond to the content of the

image has been shown to be helpful in art classification tasks (Mao et al.,

2017). However, it remains as an open question if the introduction such

kinds of mechanisms is also beneficial for semantic art understanding.

2. Knowledge integration. Paintings are strongly related to their historical,

social and artistic context. Providing such information to a model could

potentially improve the understanding of a specific artwork through its

related masterpieces. However, the acquisition and use of this kind of

knowledge is non-trivial. Future work could study the use novel mechanisms

to find, extract and introduce human knowledge into the study of art.

3. Additional tasks. For a better understanding of how algorithms study art,

it would be interesting to evaluate semantic art understanding through

additional cross-modal tasks, such as automatic title generation or visual

question answering. Future research could adapt and expand the pro-

posed SemArt dataset for a wider and common framework in semantic art

understanding evaluation.
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